

Mobile Communications Chapter 2: Wireless Transmission

- Frequencies
 Signals
 Antennas
 Signal propagation
- Multiplexing
 Spread spectrum
 Modulation
 Cellular systems

Frequencies for communication

Frequency and wave length:

 $\lambda = c/f$

wave length $\lambda,$ speed of light $c\cong 3x10^8m/s,$ frequency f

- LF waves are used for communication with submarines because they can penetrate water and can follow the Earth's surface
- MF and HF used for transmission by radio stations:
 - AM amplitude modulation, hundreds, thousand kHz
 - SW short wave, several MHz, travel long distances, being reflected by the ionosphere (used also by amateur radio: transmit power 500 kW, compared to 1W for mobile phones)
 - FM frequency modulation 80-100 MHz
- VHF and UHF used for analog TV stations (now replaced by digital TV)
- UHF used for mobile phones
- SHF: microwave links and satellite communications
- UHF, SHF and even EHF: WLANs; EHF planned also for 5G.
- IR: IrDA (Infra red data association), for connecting laptops, PDAs, etc
- Visible light: has been used for wireless transmissions for thousands years

- □ VHF-/UHF-ranges for mobile radio
 - □ simple, small antenna for cars
 - □ deterministic propagation characteristics, reliable connections
- SHF and higher for directed radio links (microwave), satellite communication
 - □ small antenna, beam forming
 - Iarge bandwidth available
- □ Wireless LANs use frequencies in UHF to SHF range
 - □ some systems planned up to EHF
 - limitations due to absorption by water and oxygen molecules (resonance frequencies)
 - weather dependent fading, signal loss caused by heavy rainfall etc.

ITU-R holds auctions for new frequencies, manages frequency bands worldwide (WRC, World Radio Conferences)

	Europe	USA	Japan
Cellular Phones	GSM 450-457, 479- 486/460-467,489- 496, 890-915/935- 960, 1710-1785/1805- 1880 UMTS (FDD) 1920- 1980, 2110-2190 UMTS (TDD) 1900- 1920, 2020-2025	AMPS, TDMA, CDMA 824-849, 869-894 TDMA, CDMA, GSM 1850-1910, 1930-1990	PDC 810-826, 940-956, 1429-1465, 1477-1513
Cordless Phones	CT1+ 885-887, 930- 932 CT2 864-868 DECT 1880-1900	PACS 1850-1910, 1930- 1990 PACS-UB 1910-1930	PHS 1895-1918 JCT 254-380
Wireless LANs	IEEE 802.11 2400-2483 HIPERLAN 2 5150-5350, 5470- 5725	902-928 IEEE 802.11 2400-2483 5150-5350, 5725-5825	IEEE 802.11 2471-2497 5150-5250
Others	RF-Control 27, 128, 418, 433, 868	RF-Control 315, 915	RF-Control 426, 868

- Signals I
- physical representation of data
- function of time and location
- signal parameters: parameters representing the value of data
- classification
 - continuous time/discrete time
 - continuous values/discrete values
 - analog signal = continuous time and continuous values
 - □ digital signal = discrete time and discrete values
- signal parameters of periodic signals: period T, frequency f=1/T, amplitude A, phase shift φ
 - □ sine wave as special periodic signal for a carrier:

 $s(t) = A_t \sin(2 \pi f_t t + \phi_t)$

Fourier representation of periodic signals

- Different representations of signals
 - □ amplitude (amplitude domain)
 - □ frequency spectrum (frequency domain)
 - \square phase state diagram (amplitude M and phase ϕ in polar coordinates)

- Composed signals transferred into frequency domain using Fourier transformation
- Digital signals need
 - □ infinite frequencies for perfect transmission
 - □ modulation with a carrier frequency for transmission (analog signal!)

Antennas: isotropic radiator

- Radiation and reception of electromagnetic waves, coupling of wires to space for radio transmission
- Isotropic radiator: equal radiation in all directions (three dimensional) - only a theoretical reference antenna
- Real antennas always have directive effects (vertically and/or horizontally)
- □ Radiation pattern: measurement of radiation around an antenna

- □ Real antennas are not isotropic radiators but, e.g., dipoles with lengths $\lambda/4$ on car roofs or $\lambda/2$ as Hertzian dipole
 - → shape of antenna proportional to wavelength

□ Example: Radiation pattern of a simple Hertzian dipole

 Gain: maximum power in the direction of the main lobe compared to the power of an isotropic radiator (with the same average power)

Antennas: directed and sectorized

Often used for microwave connections or base stations for mobile phones (e.g., radio coverage of a valley)

- Grouping of 2 or more antennas
 - multi-element antenna arrays
- □ Antenna diversity
 - □ switched diversity, selection diversity
 - receiver chooses antenna with largest output
 - diversity combining
 - combine output power to produce gain
 - cophasing needed to avoid cancellation

Radio and propagation [PP]

- Wireless = Radio
- Consider an radio transmitter that radiates equally in all directions.
- Wavefronts will be spherical.
- Power is evenly spread over the surface of a sphere.
- Received power at point S is a function of transmit power, antenna gains, distance and the frequency of operation.
- Pr is proportional to $1/r^2$

Signal propagation ranges

Transmission range

- communication possible
- Iow error rate
- **Detection range**
 - detection of the signal possible
 - no communication possible

Interference range

- signal may not be detected
- signal adds to the background noise

Signal propagation

Propagation in free space always like light (straight line)

Receiving power proportional to 1/d² in vacuum – much more in real environments

- (d = distance between sender and receiver)
- Receiving power additionally influenced by
- □ shadowing
- reflection at large obstacles
- refraction depending on the density of a medium
- scattering at small obstacles
- Diffraction at edges
- Fading (frequency dependent)

- The existence of multiple routes for the radio signal from TX to RX leads to multiple signals arriving with different phases.
- These signals add vectorially so there can be constructive interference to give a larger signal.
- Destructive interference will give a smaller signal multipath fading.
- LOS = Line of sight
- Small changes to the path will make the phase relationship between multipath signals vary so that fades will come and go.
- e.g. at 1GHz, a change of 15cm will move us from constructive interference to a deep fade.

Multipath propagation

Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction

Time dispersion: signal is dispersed over time

→ interference with "neighbor" symbols, Inter Symbol Interference (ISI)

The signal reaches a receiver directly and phase shifted

➔ distorted signal depending on the phases of the different parts

Effects of mobility

Channel characteristics change over time and location

- signal paths change
- different delay variations of different signal parts
- different phases of signal parts
- → quick changes in the power received (short term fading)

Additional changes in

- distance to sender
- obstacles further away
- ➔ slow changes in the average power received (long term fading)

- Fixed point radio quite stable, slowly varying fades
- Cellular slow and fast fading phenomenon
- Analogue mobile narrow band fades corrupt entire channel
- GSM interleaving and error correction combat narrow band fading
- UMTS wide band modulation, can tolerate up to 30% channel loss
- LTE a user receives radio resources in the spectrum part that is not (or less) affected by interference
 This requires a real-time knowledge of the radio channel !

Sharing of radio resources between many users.

central hub with more subscribers than can be fully serviced.

e.g. Fixed rural system:-

- \Box 32 channels with 64kB/s = 2.048 MB/s data
- Can be implemented as a radio system with 32 radio channels, each 64kHz wide - each channel dedicated to a specific user for the duration of their call – this is Frequency Division Multiple Access (FDMA).
- Can be implemented as a radio system with two 2MHz wide radio channels, each with 32 time slots – this is Time Division Multiple Access (TDMA).
- Can be implemented as a radio system with two 2MHz wide radio channels, each with 32 scrambling codes – this is Code Division Multiple Access (CDMA).

GSM uses a combination of FDMA and TDMA

Multiplexing

Multiplexing in 4 dimensions

- \Box space (s_i)
- □ time (t)
- □ frequency (f)
- □ code (c)
- Goal: multiple use of a shared medium

Important: guard spaces needed!

Frequency multiplex

Separation of the whole spectrum into smaller frequency bands A channel gets a certain band of the spectrum for the whole time Advantages:

k₁

С

K₃

k₆

- no dynamic coordination necessary
- works also for analog signals

Disadvantages:

- waste of bandwidth if the traffic is distributed unevenly
- □ inflexible
- □ guard spaces

A channel gets the whole spectrum for a certain amount of time

Advantages:

- only one carrier in the medium at any time
- throughput high even for many users

Time and frequency multiplex

Combination of both methods

A channel gets a certain frequency band for a certain amount of time Example: GSM

k₁

С

Advantages:

- better protection against tapping
- protection against frequency selective interference
- higher data rates compared to code multiplex
- but: precise coordination required

k₂

Code multiplex

Each channel has a unique code

All channels use the same spectrum at the same time

Advantages:

- bandwidth efficient
- no coordination and synchronization necessary
- good protection against interference and tapping

Disadvantages:

- Iower user data rates
- □ more complex signal regeneration

Implemented using spread spectrum technology

MC SS05

k₁

Modulation

Digital modulation

- □ digital data is translated into an analog signal (baseband)
- □ ASK, FSK, PSK main focus in this chapter
- □ differences in spectral efficiency, power efficiency, robustness

Analog modulation

□ shifts center frequency of baseband signal up to the radio carrier

Motivation

- \Box smaller antennas (e.g., $\lambda/4$)
- Frequency Division Multiplexing
- medium characteristics

Basic schemes

- □ Amplitude Modulation (AM)
- □ Frequency Modulation (FM)
- Phase Modulation (PM)

Modulation and demodulation

Digital modulation

Modulation of digital signals known as Shift Keying

- Amplitude Shift Keying (ASK):
 - very simple
 - Iow bandwidth requirements
 - very susceptible to interference
- Frequency Shift Keying (FSK):
 - needs larger bandwidth
- □ Phase Shift Keying (PSK):
 - more complex
 - robust against interference

- bandwidth needed for FSK depends on the distance between the carrier frequencies
- special pre-computation avoids sudden phase shifts
 MSK (Minimum Shift Keying)
- bit separated into even and odd bits, the duration of each bit is doubled
- depending on the bit values (even, odd) the higher or lower frequency, original or inverted is chosen
- □ the frequency of one carrier is twice the frequency of the other
- □ Equivalent to offset QPSK
- □ even higher bandwidth efficiency using a Gaussian low-pass filter → GMSK (Gaussian MSK), used in GSM

Example of MSK

Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS05

- BPSK (Binary Phase Shift Keying):
 - □ bit value 0: sine wave
 - □ bit value 1: inverted sine wave
 - □ very simple PSK
 - □ low spectral efficiency
 - □ robust, used e.g. in satellite systems
- QPSK (Quadrature Phase Shift Keying):
 - 2 bits coded as one symbol
 - symbol determines shift of sine wave
 - needs less bandwidth compared to BPSK
 - □ more complex

Often also transmission of relative, not absolute phase shift: DQPSK -Differential QPSK (IS-136, PHS)

Quadrature Amplitude Modulation (QAM): combines amplitude and phase modulation

- □ it is possible to code n bits using one symbol
- □ 2ⁿ discrete levels, n=2 identical to QPSK
- bit error rate increases with n, but less errors compared to comparable PSK schemes

Example: 16-QAM (4 bits = 1 symbol)

Symbols 0011 and 0001 have the same phase φ , but different amplitude *a*. 0000 and 1000 have different phase, but same amplitude.

→ used in standard 9600 bit/s modems

Hierarchical Modulation

DVB-T modulates two separate data streams onto a single DVB-T stream

- □ High Priority (HP) embedded within a Low Priority (LP) stream
- □ Multi carrier system, about 2000 or 8000 carriers
- QPSK, 16 QAM, 64QAM
- □ Example: 64QAM
 - good reception: resolve the entire
 64QAM constellation
 - poor reception, mobile reception: resolve only QPSK portion
 - 6 bit per QAM symbol, 2 most significant determine QPSK
 - HP service coded in QPSK (2 bit),
 LP uses remaining 4 bit

Problem of radio transmission: frequency dependent fading can wipe out narrow band signals for duration of the interference

Solution: spread the narrow band signal into a broad band signal using a special code

protection against narrow band interference

Side effects:

- coexistence of several signals without dynamic coordination
- □ tap-proof

Alternatives: Direct Sequence, Frequency Hopping

Effects of spreading and interference

Spreading and frequency selective fading

Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS05

XOR of the signal with pseudo-random number (chipping sequence) many chips per bit (e.g., 128) result in higher bandwidth of the signal Advantages

- reduces frequency selective fading
- □ in cellular networks
 - base stations can use the same frequency range
 - several base stations can detect and recover the signal
 - soft handover
- Disadvantages
 - precise power control necessary

DSSS (Direct Sequence Spread Spectrum) II

Discrete changes of carrier frequency

sequence of frequency changes determined via pseudo random number sequence

Two versions

- Fast Hopping: several frequencies per user bit
- Slow Hopping: several user bits per frequency

Advantages

- □ frequency selective fading and interference limited to short period
- simple implementation
- uses only small portion of spectrum at any time

Disadvantages

- not as robust as DSSS
- □ simpler to detect

FHSS (Frequency Hopping Spread Spectrum) II

FHSS (Frequency Hopping Spread Spectrum) III

Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

MC SS05

Cell structure

Implements space division multiplex: base station covers a certain transmission area (cell)

Mobile stations communicate only via the base station

Advantages of cell structures:

- □ higher capacity, higher number of users
- □ less transmission power needed
- □ more robust, decentralized
- □ base station deals with interference, transmission area etc. locally

Problems:

- □ fixed network needed for the base stations
- □ handover (changing from one cell to another) necessary
- □ interference with other cells

Cell sizes from some 100 m in cities to, e.g., 35 km on the country side (GSM) - even less for higher frequencies

Frequency planning I

Frequency reuse only with a certain distance between the base stations

Standard model using 7 frequencies:

Fixed frequency assignment:

- □ certain frequencies are assigned to a certain cell
- problem: different traffic load in different cells

Dynamic frequency assignment:

- base station chooses frequencies depending on the frequencies already used in neighbor cells
- □ more capacity in cells with more traffic
- □ assignment can also be based on interference measurements

Frequency planning II

3 cell cluster

7 cell cluster

2.44

3 cell cluster with 3 sector antennas

Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ M

MC SS05

Cell breathing

CDM systems: cell size depends on current load Additional traffic appears as noise to other users If the noise level is too high users drop out of cells

