
Design units

Lecture 2

Design units

• A digital system can be modelled in VHDL as an
entity:
– entity = the fundamental building block of any design

– Or, any design consists of one entity or a set of
entities

– An entity can be a component of another project, or it
can be the top level module of the design

• An entity is described as a set of VHDL design
units.

• The design units can be compiled separately

Design units

• In VHDL there are the following design units:
1. Entity declaration (or simply entity)

2. Architecture body (or architecture)

3. Package declaration

4. Package body

5. Configuration declaration (configuration)

• Primary design units: entity declaration, configuration
declaration, and package declaration

• Secondary design units: architecture body and
package body

Entity declaration

It specifies the name of the entity and its interface (mainly the ports of

the entity)

Syntax:

ENTITY_delcaration ::=

ENTITY name IS

entity_header

[entity_declarative_part]

[BEGIN

entity_statement_part]

END [ENTITY][name];

Entity_header ::=

[GENERIC_clause][PORT_clause]

BNF description:

::= -is defined

[] – optional sequence

{} – optional repeatable

sequence

| - logic alternatives

VHDL is NOT case

sensitive

Convention: we will write

the keywords in capital

letters

Entity declaration (cont’d)

• The entity declaration contains the keyword ENTITY
followed by the name of the entity

• The header contains
– the GENERIC clause:

• Declares the generic parameters (or generics): belong to the class
of constants and are visible in all architectures of that entity

• The value of a generic parameter can be modified when the entity
containing the generic is a component of a bigger entity.

• Generics are used most often for specifying delays, but can have
other utilizations

– The PORT clause:
• Declares the ports of the entity, i.e. the signals by which the entity

communicates with the external world

• The ports belong to the signal class

• Each port has a mode (direction):
– IN (for input ports), OUT for output ports and INOUT or BUFFER for bidirectional

ports

• entity_declarative_part is optional
– May contain declarations of constants, signals, types,

subprograms

Entity declaration (cont’d)

• entity_statement_part – also optional
– Only passive processes or equivalent statements are allowed in an

entity declaration

– Passive = should not contain signal assignment statements, i.e., the
statements from entities cannot assign (give) values to signals

– Used mostly for constrains verifications (e.g. setup and hold time,
forbidden input combinations, etc)

– The behaviour of an entity cannot be described by its internal
statements => we will need architectures for describing what an entity
does !

• The entity declarations ends with the keyword END followed
optionally by the keyword ENTITY or/and by the name of the entity;
– The name of the entity, if it appears, should be the same like in the

declaration

• The symbol ; at the end is mandatory

• See examples.

Architecture body

Implementation of an entity is described in architecture body

An entity can have any number of architectures

Architecure_body::=

ARCHITECTURE architecture_name OF entity_name IS

architecture_declarative_part

BEGIN

architecture_statement_part

END [ARCHITECTURE] [architecture_name];

Architectures

• Keyword ARCHITECTURE is followed by the
architecture identifier (name) and the name of the
associated entity

• architecture declarative part
– MAY be declared here : types, constants, signals, components,

subprograms

– MAY NOT be declared here: variables

• architecture_statement_part
– The statements inside an architecture are concurrent (i.e., they

execute in parallel) => their order is not important

• After END:
– optional the keyword ARCHITECTURE and/or

architecture_name (the same like at the beginning)

– the symbol ; (mandatory)

Statements in architectures

1. PROCESS :
– A composed concurrent statement, inside which the statements

are executed sequentially

– Is the the basic statement for behavioural modelling (sequential)

2. BLOCK : composed statement, used mainly for dataflow
modelling (concurrent)

3. Concurrent procedure calls

4. Concurrent ASSERT statements

5. Concurrent signal assignment statements

6. Component instantiation statements: for structural
modelling

7. GENERATE statement (it is a macroinstruction)

• In VHDL there exist 3 modelling styles:
1. Behavioural modelling (sequential)

– inside processes and subprograms

2. Dataflow modelling (concurrent):
– Statements 3-5 from the previous list

3. Structural modelling: component instantiation statement

• Statements 2 and 7 are special cases, which do not
belong to only one category

• In VHDL an architecture may contain any combination
of the 3 modelling styles, however

– We will discuss them separately for clarity

• We will show an example of a parity circuit modelled
in the three styles

Modelling styles

Example [EKP98]

• We will describe a parity generator circuit. It has

four inputs of type BIT and one output that is one

when the input contains an even number of ‘1’.

• This word description serves as a specification

of the circuit, which can be used for behavioural

modelling.

• We don’t need the circuit diagram for the

behavioural modelling of the circuit !

• Hence, we model the circuit at a high(er) level of

abstraction.

Behavioural modelling of the parity

circuit

ENTITY parity_circ IS

PORT(v: IN BIT_VECTOR(3 DOWNTO 0);

y: OUT BIT);

END ENTITY;

ARCHITECTURE behavioural OF parity_circ IS

BEGIN

PROCESS(v)

-- signal v is the SENSITIVITY LIST of the process

-- PROCESS declarations are here:

-- We can declare constants, variables, types,

--subprograms,..., but

-- we MAY NOT declare signals !

VARIABLE nr_of_1 : INTEGER:=0;

-- counts the 1s in the vector v

parity_circ
v y

Behavioural modelling …

BEGIN

nr_of_1:=0;

-- should be initialized every time when signal v changes,

-- which is, at each execution of the process

FOR i IN 0 TO 3 LOOP

IF v(i)='1' THEN

nr_of_1 := nr_of_1 +1;

-- there are not operators like ++, +=, etc :)

END IF;

END LOOP;

IF nr_of_1 MOD 2=0 THEN

y<= '1' AFTER 1 ns;

ELSE

y<='0' AFTER 1 ns;

END IF;

END PROCESS;

END;

Behavioural modelling: comments

• Entity:

– Is named parity_circ

– It has an input v which is a 4-bit vector

– It has an output y of type BIT

• BIT is a predefined type, having the values ‘0’ si ‘1’

• BIT_VECTOR is also a predefined type, as an ARRAY of BIT

• Architecture

– Has no declarations in the declaration part

– Contains a single statement: (PROCESS)

Comments (cont’d)

• PROCESS
– It has a sensitivity list, containing the signal v, meaning that the process

is activated (resumes execution) every time when the signal v changes
(we say that there is an event on v)

– The sensitivity list may contain several signals; the process resumes each
time when there is an event on one of the signals from the sensitivity list

– The declaration part of the process contains a variable declaration: the
variable nr_of_1 of type integer is declared here. It counts the number of
1s in the input vector.

– In processes we may declare variables, constants, subprograms, types,
subtypes, but

– We may not declare signals or components

– The statements inside a process (between BEGIN and END PROCESS)
are executed sequentially (in the specified order)

– Here the counter (nr_of_1) is incremented every time when a 1 is found in
the input vector v; if the number of 1s in v is even, then the output y will be
‘1’ after one nanosecond (1 ns) delay, otherwise y will be ‘0’

– The process is an infinite loop: after END PROCESS its execution will
continue from BEGIN (if there are events on v !)

Structural modelling

We represent the circuit diagram and we infer that

we need XOR type gates and one INVERTER gate

V(3)

V(2)

V(1)

V(0)

s1

s2

s3
y

xor1

xor2

xor3

inv1

Fig 1.Circuit diagram for

the parity generator

circuit, implemented with

XOR gates (after fig 2.3

from [EKP98]).

Gates description: xor2

ENTITY xor2 IS

GENERIC(del: TIME:=3ns);

PORT(x1,x2: IN BIT;

y: OUT BIT);

END xor2;

ARCHITECTURE behave OF xor2 IS

-- signal declarations, etc,

-- variabiles MAY NOT be declared in architecture !

BEGIN

y <= x1 XOR x2 AFTER del;

END behave;

xor2

x1

x2

y

Gates description : inverter
ENTITY inverter IS

GENERIC(del: TIME:=4ns);

PORT(x: IN BIT;

y: OUT BIT);

END inverter;

ARCHITECTURE behave OF inverter IS

-- declarations

BEGIN

y <= NOT x AFTER del;

END behave;

inverter
x y

Structural modelling of the parity

circuit
ARCHITECTURE struct OF parity_circ IS

COMPONENT xor_gate IS

GENERIC(del: TIME:=3ns);

PORT(x1,x2: IN BIT; y: OUT BIT);

END COMPONENT;

COMPONENT inv_gate IS

GENERIC(del: TIME:=4ns);

PORT(x: IN BIT; y: OUT BIT);

END COMPONENT;

SIGNAL s1, s2, s3: BIT;

BEGIN

xor1: xor_gate PORT MAP(y => s1, x2=> v(2), x1=> v(3));

-- named association

xor2: xor_gate PORT MAP(v(1), v(0), s2);--positional association

xor3: xor_gate GENERIC MAP(del => 4ns) PORT MAP(s1, s2, s3);

inv1: inv_gate PORT MAP(x=>s3, y=>y);

END ARCHITECTURE struct;

Structural description

• Contains the components of the design and their
interconnections

• The behaviour of the system is not explicitly specified,
but it results from the structure (similar to a circuit
design)

• In the example, the architecture contains two component
declarations and signal declarations in the declarative
part

• The components are not active elements, but rather
templates

• The declared signals are internal for the architecture

• In this example, the architecture body contains only
component instantiation statements

Structural description

• The syntax for the component instantiation statement: a
mandatory label (the labels should be different inside an
architecture), followed by the name of the component
(same like in component declaration) and a PORT MAP
clause

• PORT MAP makes an association between each formal
port (the ports from the component declaration) and the
corresponding actual port (internal signal or port of the
modelled entity that is connected to the formal port).

• In VHDL there are rules concerning the types and mode
(direction) of the formal and actual ports:
– The type of the formal and actual port must match

– A formal OUT port may not be connected to an IN actual port; neither can a
formal IN port be connected to an actual OUT port

• The signals internal to an architecture have no mode; it
means that they can be connected to both IN and OUT
formal ports

Structural description

• The PORT MAP can be:
– Positional: the name of the formal port is not specified; the

name of the actual port is specified on the position
corresponding to the formal port (from the component
declaration)

• NOT recommended, it can generate errors that are very difficult to
detect !

– By name: it is specified both the name of the formal port
and of the actual port

• The order of ports is not important in this case

• The syntax is always formal_port => actual_port

• The mapping symbol => is from the formal port to the actual port,
no matter if the ports are IN or OUT

• GENERIC MAP
– can be used to modify the values of some generic

parameters for a certain component instantiation

Structural description

• In order to simulate a structural description, we need also
the entity and architecture for each of the components
used (xor_gate and inv_gate in our example).

• See gates description for this example

• If the associated entity has the same name (and the same
ports and generics) like the component declared in an
architecture, then the simulator can realize an association
between them (default binding)

• If, like in our example, entities have other names than the
components (which can happen if two different teams work
to a design or if we use components from different
libraries), then we need a configuration in order to realize
the association (the binding)

A configuration of the parity circuit

CONFIGURATION cfg_parity_circ OF parity_circ IS

FOR struct

FOR ALL: xor_gate USE ENTITY WORK.xor2(behave);

END FOR;

FOR inv1: inv_gate USE ENTITY WORK.inverter(behave);

END FOR;

END FOR;

END CONFIGURATION;

Configurations

• In example we have a configuration declaration

• There is also the configuration specification, which is
declared inside the declaration part of an architecture

• The configuration declaration specifies the name of the
configuration and the associated entity

• Then it is specified the architecture for which is the
configuration (an entity can have different architectures)

• Each component instantiation is associated with an
entity(architecture) pair. In this example, from the current
working library, with the logic name WORK.

• If the names of ports and/or generics differ between
component and entity, the association between those
names is made in the configuration (not in the example)

• VHDL is extremely reach concerning the configurations !

Two dataflow architectures of the

parity circuit

ARCHITECTURE dataflow1 OF parity_circ IS

SIGNAL s1, s2, s3: BIT;

BEGIN

y<=NOT s3 AFTER 11ns;

s3<=s2 XOR s1;

s2<=v(0) XOR v(1);

s1<=v(3) XOR v(2);

END;

ARCHITECTURE dataflow2 OF parity_circ IS

BEGIN

y<= NOT(v(0) XOR v(1) XOR v(2) XOR v(3)) AFTER 11ns;

END ARCHITECTURE;

Dataflow modelling

• Both architectures from our example contain only
concurrent signal assignment statements

• First architecture is very close to the structural
description

• The statements in the architecture are concurrent,
the order in which they appear is not important

• Second architecture contains only one statement

• Dataflow modelling is based on conditional or
selected signal assignment statements.

• Each of them is equivalent with a process
containing an IF, or respectively a CASE
statement.

PACKAGE
Definition: “a package is a collection of declarations such as subprograms,

types, subtypes, constants, components, and possibly others, which are

grouped in a way that allows different design units to share them” [EKP98].

PACKAGE declaration: is the interface to the package, containing those

declarations that are made visible from outside. Its syntax is given bellow

[EKP98]

Hidden details, that are not visible from outside, are grouped in the

PACKAGE BODY.

A package declaration can have at most one package body.

Package body must exist if in package declaration appear subprogram

declarations or deferred constants.

Package_declaration::=

PACKAGE name IS

package_declarative_part

END [PACKAGE] [name];

Package_body::=

PACKAGE BODY name IS

package_body_declarative_part

END [PACKAGE BODY] [name];

PACKAGE
• If there is a PACKAGE BODY, then its name is the same with the

name from package_declaration

• In order to make visible in a design unit the content of a package or
only an identifier, we must use the clause USE before that design
unit. Two forms are possible:
– USE package_name.ALL;

– USE package_name.identifier;

• In the first case the entire content of the package becomes visible in
the design unit, while in the second case, only the specified identifier
(e.g. a type, a subprogram, a component, a constant, etc) is visible.

• Deferred constants: sometimes we want to declare a constant in a
PACKAGE declaration without specifying its value => it must exist also
a package body.

• The value of the constant will be given only in the package body

• This is useful if we want to change the value of the constant later on.

• If the constant is declared in the package declaration, all design units
that use the package must be recompiled when we recompile the
package declaration

• With deferred constants, we have to recompile only the package body.

PACKAGE

• What to put in a package body:
– Deferred constants

– The definition of the subprograms declared in package declaration: a
subprogram is only declared in package declaration, its body being
given in the package body. Hence, the subprogram’s body is NOT
visible from outside

– Other items: for example subprograms that we use for implementing
other subprograms, but we don’t want to make them visible from
outside. Example: in package declaration we declare a function that
adds two bit vectors resulting another bit vector. In order to implement
the function (in the package body !) we need a function that converts bit-
vectors to integers and another function, that converts integers to bit
vectors. We can put those converting functions in the package body

• In VHDL there are two predefined packages:
– STANDARD : contains standard types like BIT, BIT_VECTOR, integer, Boolean,

real, character, string, time

– TEXTIO: for working with text files

• Other packages of interest:
– STD_LOGIC_1164 from the library IEEE : it extends the BIT type and the

operations associated with it to a 9-value logic type.

