Finite state machines

Modelling FSM in VHDL



Types of automata (FSM)

* A sequential automaton has:
— Inputs
— States (a finite number of states)
— Outputs
— Transitions from one state to another

* Types of FSM:

— Moore:

 outputs depend only on the current state
— Mealy:

 outputs depend on both state and inputs



VHDL modelling

Can be done with
— O0ne process
— two processes
We define a type states (of type ennumeration)
— TYPE states IS (s0, s1, s2, s3);
— TYPE states IS (init, add, shift);
We have:

— Either present state (present state) and next state (next state)
of type states

— Oronly state (state) of type states
The states (present state, next state, state) may be
signals or variable, depending on the implementation (they should
be signals if we |mplement FSM with two processes)
One process determines next state and the outputs

— Contains a CASE after the present state, and on each branch (choice)
there are IF statements with the inputs in conditions



Modelling

With two processes:

— one process is sensitive to clock and does only
present state<=next state;

— The other process is sensitive to present state and inputs; it
computes next state

With one process:
— The process is sensitive to clock
— The state (state) may be a variable

Moore / Mealy:
— For Moore: outputs depend only on the current state
— For Mealy: outputs depend on both state and inputs

One possibility would be to use the negative (falling)
edge of the clock for the FSM, if the other sequential
circuits use the positive (rising) edge of the clock

The outputs of the FSM are commands for the other
circuits (e.g. shift, load, etc)



Moore FSM example

x="0 x="1
stare = s0 sO s3
z="00"
stare = sl sl sO
z="01"
stare = s2 S2 sl
z="10"
stare = s3 S2 sl

Z=“1 1 7




ENTITY FSM_Moore IS
GENERIC(tp: TIME:=5ns);
PORT(x: IN BIT; clock: IN BIT;
z: OUT BIT_VECTOR(1 DOWNTO 0)):
END ENTITY;

ARCHITECTURE one_process OF FSM_Moore IS
TYPE states IS (s0, s1, s2, s3);
SIGNAL display_state: states;
BEGIN
PROCESS (clock)
VARIABLE state: states:=s0;
--VARIABLE count: integer:=0;
BEGIN
IF clock="0" AND clock'EVENT THEN
--display_state<=state; -- visualize present state
CASE state IS
WHEN s0 =>
z<="00" after tp;
--count:=0;--init count

IF x="0' THEN
state:=s0;
ELSE
state:=s3,
END IF;

WHEN s1 =>



z<="0Q1" after tp;
--count:= count+1;-- increment count

IF x="0' THEN
state:=sl,
ELSE
state:=s0;
END IF;
WHEN s2 =>

z<="10" after tp;
--IF count>=5 THEN -- test count

IF x="0' THEN
state:=s2,;
ELSE
state:=sl,
END IF;
WHEN s3 =>
z<="11" after tp;
IF x="0' THEN
State:=s2,
ELSE state:=s1;
END IF;

END CASE;
display_state<=state;--visualize next state
END IF;
END PROCESS;
END ARCHITECTURE;



Example of Mealy FSM

x="0 x="1
present_state = sO / “00” s3 /11"
sO
present_state = s1/°01” sO / “00”
sl
present_state = s2 /10" s1/°01”
S2
present_state = s2 /10" s1/°01”

s3




ENTITY FSM_Mealy IS

GENERIC(tp: TIME:=5ns);

PORT(x: IN BIT; clock: IN BIT; z: OUT BIT_VECTOR(1 DOWNTO 0));
END ENTITY;

ARCHITECTURE two_processes OF FSM_Mealy IS
TYPE states IS (s0, s1, s2, s3);
SIGNAL present_state, next_state: states:=s0;
BEGIN
proc_clock: PROCESS(clock)
BEGIN
IF clock='0" AND clock'EVENT THEN
present_state <= next_state;
END IF;
END PROCESS proc_clock;
compute_next_state: PROCESS (present_state, x)
--VARIABLE count: integer:=0;
BEGIN
CASE present_state IS
WHEN s0 => --count:=0;--initialize count
IF x="0' THEN
next_state<=s0;
z<="00" after tp;
ELSE
next_state<=s3;
z<="11" after tp;
END IF;
WHEN s1 => --count:= count+1;-- increment count



IF x='"0' THEN
next_state<=sl,;
z<="01" after tp;

ELSE
next_state<=s0;
z<="00" after tp;
END IF;
WHEN s2 => --IF count>=5 THEN -- test count
IF x="0' THEN
next_state<=s2;
z<="10" after tp;
ELSE
next_state<=sl;
z<="01" after tp;
END IF;
WHEN s3 =>
IF x="0' THEN
next_state<=s2;
z<="10" after tp;
ELSE
next_state<=sl,
z<="01" after tp;
END IF;
END CASE;

END PROCESS compute next_state;
END ARCHITECTURE;



