
Finite state machines

Modelling FSM in VHDL



Types of automata (FSM) 

• A sequential automaton has:
– Inputs

– States (a finite number of states)

– Outputs

– Transitions from one state to another

• Types of FSM:
– Moore: 

• outputs depend only on the current state

– Mealy: 
• outputs depend on both state and inputs



VHDL modelling

• Can be done with
– one process

– two processes

• We define a type states (of type ennumeration)
– TYPE states IS (s0, s1, s2, s3);

– TYPE states IS (init, add, shift);

• We have:
– Either present state (present_state) and next state (next_state) 

of type states

– Or only state (state) of type states

• The states (present_state, next_state, state) may be 
signals or variable, depending on the implementation (they should 
be signals if we implement FSM with two processes)

• One process determines next state and the outputs
– Contains a CASE after the present state, and on each branch (choice) 

there are IF statements with the inputs in conditions



Modelling

• With two processes:
– one process is sensitive to clock and does only 
present_state<=next_state;

– The other process is sensitive to present_state and inputs; it 
computes next_state

• With one process: 
– The process is sensitive to clock

– The state (state) may be a variable

• Moore / Mealy:
– For Moore: outputs depend only on the current state

– For Mealy: outputs depend on both state and inputs

• One possibility would be to use the negative (falling) 
edge of the clock for the FSM, if the other sequential 
circuits use the positive (rising) edge of the clock

• The outputs of the FSM are commands for the other 
circuits (e.g. shift, load, etc) 



Moore FSM example

x=‘0’ x=‘1’

stare = s0

z=“00”

s0 s3

stare = s1

z=“01”

s1 s0

stare = s2

z=“10”

s2 s1

stare = s3

z=“11”

s2 s1



ENTITY FSM_Moore IS

GENERIC(tp:TIME:=5ns);

PORT(x: IN BIT; clock: IN BIT;

z: OUT BIT_VECTOR(1 DOWNTO 0));

END ENTITY;

ARCHITECTURE one_process OF FSM_Moore IS

TYPE states IS (s0, s1, s2, s3);

SIGNAL display_state: states;

BEGIN

PROCESS (clock)

VARIABLE state: states:=s0;

--VARIABLE count: integer:=0;

BEGIN

IF clock='0' AND clock'EVENT THEN

--display_state<=state; -- visualize present state

CASE state IS

WHEN s0 =>

z<="00" after tp;

--count:=0;--init count

IF x='0' THEN 

state:=s0;

ELSE 

state:=s3;

END IF;

WHEN s1 =>



z<="01" after tp;

--count:= count+1;-- increment count

IF x='0' THEN 

state:=s1;

ELSE 

state:=s0;

END IF;

WHEN s2 =>

z<="10" after tp;

--IF count>=5 THEN -- test count

IF x='0' THEN 

state:=s2;

ELSE 

state:=s1;

END IF;

WHEN s3 =>

z<="11" after tp;

IF x='0' THEN 

state:=s2;

ELSE state:=s1;

END IF;

END CASE;

display_state<=state;--visualize next state

END IF;

END PROCESS;

END ARCHITECTURE;



Example of Mealy FSM

x=‘0’ x=‘1’

present_state = 

s0

s0 / “00” s3 / “11” 

present_state = 

s1

s1 / “01” s0 / “00”

present_state = 

s2

s2 / “10” s1 / “01”

present_state = 

s3

s2 / “10” s1 / “01”



ENTITY FSM_Mealy IS

GENERIC(tp:TIME:=5ns);

PORT(x: IN BIT; clock: IN BIT; z: OUT BIT_VECTOR(1 DOWNTO 0));

END ENTITY;

ARCHITECTURE two_processes OF FSM_Mealy IS

TYPE states IS (s0, s1, s2, s3);

SIGNAL present_state, next_state: states:=s0;

BEGIN

proc_clock: PROCESS(clock)

BEGIN

IF clock='0' AND clock'EVENT THEN

present_state <= next_state;

END IF;

END PROCESS proc_clock;

compute_next_state: PROCESS (present_state, x)

--VARIABLE count: integer:=0;

BEGIN

CASE present_state IS

WHEN s0 => --count:=0;--initialize count

IF x='0' THEN 

next_state<=s0;

z<="00" after tp;

ELSE 

next_state<=s3;

z<="11" after tp;

END IF;

WHEN s1 => --count:= count+1;-- increment count



IF x='0' THEN 

next_state<=s1;

z<="01" after tp;

ELSE 

next_state<=s0;

z<="00" after tp;

END IF;

WHEN s2 => --IF count>=5 THEN -- test count

IF x='0' THEN 

next_state<=s2;

z<="10" after tp;

ELSE 

next_state<=s1;

z<="01" after tp;

END IF;

WHEN s3 =>

IF x='0' THEN 

next_state<=s2;

z<="10" after tp;

ELSE 

next_state<=s1;

z<="01" after tp;

END IF;

END CASE;

END PROCESS compute_next_state;

END ARCHITECTURE;


