
Dataflow modelling

Lecture 4

Dataflow modelling

• Specifies the functioning of a circuit without
explicitly refer to its structure

• Functioning is described by the flow of
information through the circuit, using mostly
concurrent signal assignment statements and
BLOCK statements

• Statements:
– Concurrent signal assignments

– Concurrent ASSERT statements

– Concurrent procedure calls

– BLOCK

Concurrent signal assignments
•Concurrent signal assignments are triggered by events (they are event triggered), i.e.

they execute when an event takes place for the expression that is assigned to the

signal.

•Sequential signal assignment execute when the statement is executed within the

process => they are not triggered by the events from the expression that is assigned to

the signal.

Example:

ARCHITECTURE sequential_assignment OF example IS

SIGNAL a, b, z : some_type;

BEGIN

PROCESS(b)

BEGIN

 a<=b;

 z<=a;

END PROCESS;

END ARCHITECTURE;

Concurrent signal assignments
ARCHITECURE concurrent_assignment OF example IS

SIGNAL a, b, z: some_type;

BEGIN

 a<=b;

 z<=a;

END ARCHITECTURE;

First architecture (sequential_assignment):

•When there is an event on b, the process will resume

•Signal a is scheduled to take the new value of b;

•Signal z is scheduled to take the value of a (which is the previous value of b).

Concurrent signal assignments
Second architecture (concurrent_assignment):

•If an event takes place on b at the moment Tc, then the statement a<=b is

executed

•Hence a is scheduled a new value at the moment Tc+Δ;

•At Tc+ Δ an event takes place on a => the statement z<=a is executed;

•At Tc+2 Δ signal z will receive the value of a, which is also the new value of b.

Second architecture is equivalent with:

PROCESS(b)

BEGIN

 a<=b;

END PROCESS;

PROCESS(a)

BEGIN

 z<=a;

END PROCESS;

Concurrent signal assignments

A concurrent statement like:

 s<=x+y+z; -- x, y, z, s signals

Is equivalent with:

PROCESS

BEGIN

 s<=x+y+z;

 WAIT ON x,y,z;

END PROCESS;

Conditional signal assignment

statement
concurrent_signal_assignment::=

 [POSTPONED] conditional_signal_assignment |

 [POSTPONED] selected_signal_assignment;

conditional_signal_assignment::=

target<= [TRANSPORT|[REJECT time_expression] INERTIAL] conditional_waveforms;

conditional_waveforms::=

 {waveform WHEN condition ELSE}

 [waveform WHEN condition]

•Conditional signal assignment is executed every time when an event takes place on any

one of the signals from the waveforms or from conditions.

•Conditions are evaluated one by one, in the order in which they are written.

•For the first condition found true, the target signal is assigned the waveform from that

condition.

Conditional signal assignment

statement: the equivalent process

Example. In an architecture we have the statement:

ARCHITECTURE ex OF ex IS

BEGIN

s<=x+y-2 AFTER 10ns WHEN i0=‘0’ AND i1=‘0’ ELSE

 x-y+2 AFTER 10ns WHEN i0=‘1’ AND i1=‘0’ ELSE

 x+y AFTER 7ns WHEN i0=‘0’ AND i1=‘1’ ELSE

 x-y AFTER 5ns;

END ARCHITECUTE;

Conditional signal assignment statement:

the equivalent process

The statement is equivalent with the following process:

PROCESS

BEGIN

 IF i0=‘0’ AND i1=‘0’ THEN

 s<= x+y-2 AFTER 10ns ;

 ELSIF i0=‘1’ AND i1=‘0’ THEN

 s<= x-y+2 AFTER 10ns;

 ELSIF i0=‘0’ AND i1=‘0’ THEN

 s<=x+y AFTER 7ns;

 ELSE

 s<=x-y AFTER 5ns;

 END IF;

 WAIT ON i0,i1,x,y;

END PROCESS;

Selected signal assignment

selected_signal_assignment::=

 WITH expression SELECT

 target <= [TRANSPORT|[REJECT time_expression]INERTIAL] selected_waveforms;

Selected_waveforms::=

 {waveform WHEN choices,}

 waveform WHEN choices

choices::= {choice,}

choice::=simple_expression | discrete_range | OTHERS

•When an event takes place on any one of the signals from expression or from waveforms, the

statement is executed, which means:

•expression is evaluated

•The target signal is assigned the waveform from the branch which contains the value of

the expression.

•Choices must be different and must cover all the values of the expression.

Selected signal assignment: the

equivalent process
The statement:

WITH a+b SELECT

 s<= x+y WHEN 0|1|2,

 x-y AFTER 5ns WHEN 3 TO 10,

 UNAFFECTED WHEN OTHERS;

Is equivalent with:

PROCESS

BEGIN

 CASE a+b IS

 WHEN 0|1|2 => s<=x+y;

 WHEN 3 TO 10 => s<= x-y AFTER 5ns;

 WHEN OHTERS=> NULL;

 END CASE;

 WAIT ON a,b,x,y;

END PROCESS;

The UNAFFECTED value

• There are situations when we want that
the value of a signal will remain
unchanged

• This can be done using UNAFFECTED

• Using UNAFECTED there will be no
changes on the signal driver

– If we write x <= x; there will be changes !

• Sequential equivalent for UNAFFECTEFD
is the NULL statement;

Concurrent ASSERT statement

•Has the same form like sequential ASSERT statement.

•It is executed every time when there is an event on any of the signals from conditions.

•Example:

ASSERT s1/=s2 -- /= means different

REPORT “error, s1=s2” SEVERITY ERROR;

•The equivalent process:

PROCESS

BEGIN

 ASSERT s1/=s2 REPORT “eror, s1=s2” SEVERITY ERROR;

 WAIT ON s1,s2;

END PROCESS;

Concurrent procedure calls

• In VHDL there exist procedures and functions.
– A FUNCTION returns one value

– A PROCEDURE performs some computations

• Function calls appear in expressions, hence they cannot
be separate statements.

• Procedure calls can be sequential or concurrent
statements.

• A concurrent procedure is equivalent with a process that
contains
– The sequential procedure call

– And a WAIT statement containing in the sensitivity clause all
signals that are parameters of mode IN or INOUT of that
procedure

• A concurrent procedure call does not allow the procedure
to have parameters of class VARIABLE.

Concurrent procedure calls

-- procedure declaration

PROCEDURE compute(SIGNAL a,b: IN INTEGER; SIGNAL res: OUT

INTEGER; SIGNAL x: INOUT INTEGER)

BEGIN

…

END PROCEDURE;

--a concurrent procedure call (inside an architecture):

ARCHITECTURE call_proc OF ex IS

 SIGNAL siga, sigb,sigres, sigx: INTEGER;

BEGIN

 …

 compute(siga, sigb, sigres, sigx);

END ARCHITECTURE;

Concurrent procedure calls

-- the equivalent process:

ARCHITECTURE call_proc OF ex IS

 SIGNAL siga, sigb, sigres, sigx : INTEGER;

PROCESS

BEGIN

 compute(siga, sigb, sigres, sigx);

 WAIT ON siga, sigb, sigx;

END PROCESS;

END ARCHITECTUTRE;

BLOCK statement [Bha95]

• It is a concurrent statement

• It can have three utilizations:

1.to deactivate the driver of a signal (in guarded blocks)

2.To limit the visibility of some declarations (including

signal declarations)

3.To partition a project in order to increase the clarity of

the program:

– E.g. we describe a microprocessor and we have the

registers block, the ALU block, the control unit block, etc.;

in the registers block we can have a block for each

register

BLOCK
BNF description:

Block_statement::=

Block_label: BLOCK [(guard_expression)][IS]

 [Block_header]

 [Block_declarative_part]

 BEGIN

 concurrent_statements

 END BLOCK [Block_label];

BLOCK
• Block_label –the label is mandatory.

• Block_header – block header
– If it exists, it describe the block interface with the outside word, i.e. ports

and generics (like for components)

– since blocks cannot be instantiated, the header is less useful like at
components (used during the elaboration phase !!)

• Block_declarative_part
– Declarative part is optional

– May contain declarations of:
• Types, subtypes, constants, signals

– MAY NOT contain: variable declarations

– Anything declared in the declarative part of the block is visible only
inside the block

• The body of the block: between BEGIN and END BLOCK:
– May contain any number of concurrent statements, including none

– May conain other BLOCK statements, on any number of levels.

• The label from the end of the block is optional but, if appears, it must
be the same as the label from the beginning of the block.

• The symbol ; at the end is mandatory

Blocks and guards

Guard_expression: -

•If the block contains a guard expression, then a signal named GUARD, of

type BOOLEAN, will be implicitly declared.

•The value of the signal GUARD is given by the guard expression, which hasto

be of type BOOLEAN.

• In the guard expression we can have signals, but not variables.

•The value of the signal GUARD is updated when the guard value changes.

•Signal assignment from inside the block can use the GUARD signal in order

to activate / de-activate their drivers.

•Example:

 b1: BLOCK (strobe=‘1’)

 BEGIN

 z <= GUARDED NOT a;

 END BLOCK b1;

Blocks and guards

• The keyword GUARDED can be optionally used at
concurrent signal assignments inside the block

• In the previous example
– The guard expression is (strobe=‘1’)

– GUARD <= (strobe=‘1’);

– When strobe is modified strobe, the GUARD signal will be
modified as well

– When the GUARD signal has the value TRUE, the signal z is
assigned the expression (NOT a)

– If GUARD is FALSE then the driver of z is de-activated, i.e. :

• The events that appear on signal a do not affect the value of z

• Signal z maintains its previous value.

Guarded signal assignment

• It is the only statement whose semantics is affected by
its presence inside a guarded block

• Models sequential logic (hardware elements triggered by
certain events)

• Functioning of the statement:
– Every time where an event takes place on any of the signals

from the expression and if the guard has the value TRUE or ot
changes its value from FALSE to TRUE, the guarded signal
assignment statement will be executed (new values are
scheduled to the target signal)

– If the value of the guard signal is FALSE, then the driver of the
target signal remains unchanged (the value of the target signal
remains also unchanged)

The equivalent process
bl: BLOCK (guard_expression)

 --SIGNAL GUARD: BOOLEAN;

BEGIN

 sig<= GUARDED waveform_expression;

END BLOCK b1;

Is equivalent with

bl:BLOCK (guard_expression)

 --SIGNAL GUARD: BOOLEAN;

BEGIN

PROCESS

BEGIN

 IF GUARD THEN

 sig<= waveform_expression;

 END IF;

 WAIT ON GUARD, signals_in_waveform_expression;

END PROCESS;

END BLOCK;

Other examples

Signal GUARD, although not explicitly declared, can be used inside the block.

Example:

b2:BLOCK (set=‘1’ AND reset=‘0’)

BEGIN

 q<= ‘1’ WHEN GUARD ELSE ‘0’;

END BLOCK b2;

The signal assignment statement is not guarder => the driver of signal q will
never be deactivated.

Other examples

In a block it is possible to declare explicitly a BOOLEAN signal named

GUARD, to assign a logic expression to it and then to use it for guarded signal

assignments inside the block. :

B3: BLOCK

 SIGNAL GUARD: BOOLEAN;

BEGIN

 GUARD <= reset=‘0’ AND set=‘1’;

 q <= GUARDED d;

END BLOCK;

Example of D flip-flop

ENTITY dff IS

 PORT(clk, d: IN BIT; q, qbar : OUT BIT);

END dff;

ARCHITECTURE garda OF dff IS

BEGIN

B: BLOCK(clk=‘1’ AND NOT clk’STABLE)

-- had the guard been (clk=‘1’), D would have been level-

-- triggered (i.e., a latch), now is edge-triggered (flip-flop)

 SIGNAL temp: BIT;

BEGIN

 temp<=GUARDED d;

 q<=temp;

 qbar<=NOT temp;

END BLOCK;

END ARCHITECTURE;

• signal temp is visible only inside the block

•clk’STABLE is a BOOLEAN signal which is TRUE if clk did not have any events in the

current simulation cycle

Example of visibility limitation

ARCHITECTURE ex OF ex IS

 SIGNAL s1, s2: INTEGER;

BEGIN

b1: BLOCK

 SIGNAL s3, s4: INTEGER;

BEGIN

 b2: BLOCK

 SIGNAL s1, s4, s5: INTEGER; -- s1 and s4

-- overwritten

 BEGIN

 s4<=...– refers to s4 from the block b2

 b1.s4 <= ...—in order to refer to s4 from b1

 END BLOCK b2;

END BLOCK b1;

END ARCHITECTURE;

	Slide 1: Dataflow modelling
	Slide 2: Dataflow modelling
	Slide 3: Concurrent signal assignments
	Slide 4: Concurrent signal assignments
	Slide 5: Concurrent signal assignments
	Slide 6: Concurrent signal assignments
	Slide 7: Conditional signal assignment statement
	Slide 8: Conditional signal assignment statement: the equivalent process
	Slide 9: Conditional signal assignment statement: the equivalent process
	Slide 10: Selected signal assignment
	Slide 11: Selected signal assignment: the equivalent process
	Slide 12: The UNAFFECTED value
	Slide 13: Concurrent ASSERT statement
	Slide 14: Concurrent procedure calls
	Slide 15: Concurrent procedure calls
	Slide 16: Concurrent procedure calls
	Slide 17: BLOCK statement [Bha95]
	Slide 18: BLOCK
	Slide 19: BLOCK
	Slide 20: Blocks and guards
	Slide 21: Blocks and guards
	Slide 22: Guarded signal assignment
	Slide 23: The equivalent process
	Slide 24: Other examples
	Slide 25: Other examples
	Slide 26: Example of D flip-flop
	Slide 27: Example of visibility limitation

