
Subprograms

Lecture 6



Subprograms

• A subprogram defines a sequential algorithm that 
performs some computations.

• Subprograms can be:
– 1. functions 

– 2. procedures

• Functions:
– Compute a single value

– Execute in zero simulation time => do not contain WAIT 
statements.

• Procedures:
– May return zero or more values

– May contain WAIT statements 
• In that case do not execute in zero simulation time

• NOT RECOMMENDED !!

– May be called sequentially or concurrently.



Subprograms: specification

Subprogram-specification:

subprogram-specification IS

 subprogram-item-declarations

BEGIN

 subprogram-statements

END [FUNCTION | PROCEDURE] [subprogram-name];

Subprogram-specification:

 - gives the name of the subprogram

 - defines the interface of the subprogram, i.e. the formal parameters.

Subprogram-item-declarations: the declarations from the subprogram

Subprogram-statements: sequential statements and the RETURN statement

Subprogram-name at the end: if it appears, is the same as the name from 
subprogram-specification

Symbol ; at the end is mandatory.



Specification: parameters

• Formal parameters have:
– name 

– Type

– class: constant, variable, signal, FILE 

– mode: IN, OUT, INOUT

• The mode of the formal parameters:
– IN – may be read, but not modified 

– OUT –may be modified, but may not be read

– INOUT: may be both read and modified

– Files don’t have mode, they may be read or written, depending 
on how they are opened.

– Functions may have only parameters of mode IN, procedures 
may have parameters of any mode.



Subprogram parameters

• Subprogram calls use actual parameters.

• Associations:
– To a formal parameter of class signal it may be associated only an actual 

parameter of class signal.

– To a formal parameter of class variable it may be associated only an actual 
parameter of class variable.

– To a formal parameter of class file it may be associated only an actual 
parameter of class file.

– To a formal parameter of class constant it may be associated an expression.

– The type of the formal and actual parameter must be the same

– If a formal parameter is an unconstrained array, its size will be given by the 
size of the actual parameter

• Signals:
– In functions we MAY NOT assign values to signals

– If inside a procedure there is a signal assignment statement, then the signal 
driver is affected immediately, no matter if the procedure ends or not.

– In procedures (and in functions) it is not allowed to use attributes that 
generate new signals: ‘STABLE, ‘QUIET, ‘TRANSACTION, ‘DELAYED



Subprograms: declarations

• Subprogram-item-declarations:
– May be type declarations or object declarations 

(constants, variables, but NOT signals!)

– May not be component declarations !

– These declarations are visible only inside 
subprograms and become effective only at the 
subprogram call.

– Hence, a variable declared inside a subprogram 
• is initialized at every call of the subprogram and 

• It exists only during the execution of the subprogram.

• (A variable declared inside a process is initialized at the 
beginning of the simulation, exists for the entire duration of 
the simulation and it maintains its value from one execution 
of the process to another) 



Specification: statements

• The statements from subprograms can be:
– Sequential statements (like in processes)

– RETURN statement:

• Syntax: RETURN [expression];

• It may exist only in subprograms

• When it is executed the subprogram ends and the control is given 
back to the program that called the subprogram.

• All functions must contain RETURN expression;

– Value of the expression is returned to the program that called the function

• In procedures the OUT and INOUT parameters return values, too.

• Procedures may have side effects, i.e. they can affect 
objects that are declared globally to the procedure -> NOT  
recommended !! 



Procedures
Procedures permit the de-composing of long code sequences into sections. 

Unlike a function, a procedure may return zero or more values.

Syntax for procedure specification:

 PROCEDURE procedure_name(parameter_list)

where parameter_list specifies the list of formal parameters.

Parameter classes: constant, variable, signals (and files)

Parameter mode: IN, OUT, INOUT.

If the parameter class is not specified, then it will be constant for the parameters 

of mode IN and variable for the parameters of mode OUT or INOUT. 

It it is not specified the mode of a parameter, then implicitly it will be IN.

Example of procedure:

TYPE op_code IS (add, sub, mul, div, lt, le, eq);

…



Procedures

PROCEDURE alu_proc IS (a,b: IN INTEGER; op: op_code; z: 

OUT INTEGER; zcomp: OUT BOOLEAN) IS

BEGIN

 CASE op IS

  WHEN add => z:=a+b;

  WHEN sub=> z:=a-b;

  WHEN mul=> z:=a*b;

  WHEN div=> z:=a/b;

  WHEN lt=> zcomp := a<b;

  WHEN le=> zcomp:= a<=b;

  WHEN eq=> zcomp:=a=b;

END CASE;

END PROCEDURE alu_proc;



Procedures
Procedure call can be sequential or concurrent. Syntax:

[label:] procedure_name(list_of_actuals);

The concurrent procedure call is equivalent with a process that contains the 

sequential call and that has a sensitivity list containing the parameters belonging 

to class signal and having the mode IN or INOUT. 

Actual parameters can be specified by positional or named association.

Example:

alu_proc(d1,d2,add, sum, comp); -- positional association

alu_proc(z=>sum, b=>d2, a=>d1, op=>add, zcomp=>comp);-- named 

association 

If a procedure contains WAIT statements, then it may not be called from a 

process that has a sensitivity list. 

A procedure may be postponed, being declared in this way:

POSTPONED PROCEDURE a_procedure(list_of_parameters) IS

… 



Declaration versus specification

A procedure may be only declared, without specifying its body. The same is 

true for functions:

 - for example in PACKAGE DECLARATION

 -it is useful at  a recursive call (see example)

Syntax for a subprogram declaration:

subprogram_specification

Example with two  subprograms:

PROCEDURE p(…) IS

 VARIABLE a, b:…

BEGIN

 a:=q(b);

…

END p;



Declaration versus specification
FUNCTION q(…)

BEGIN

…

 p();

…

END q;

The example is wrong, it will not compile.

The correct form is:

PROCEDURE p();

FUNCTION q();

PROCEDURE p() IS

…

END p; 
FUNCTION q() IS
…
END FUNCTION q;



Functions
Specification:

[PURE|IMPURE] FUNCTION function_name (parameter_list) 

RETURN return_type

A function is pure if it returns the same value every time when it is called with the 

same set of actual parameters.

An impure function may return different values when it is called with the same 

set of actual parameters. 

Implicitly a function is pure. Example of impure functions:

 - functions that generate random numbers

 - The function NOW (returns the current simulation time).

Parameter_list describes the list of formal parameters of the function. They can 

be only of mode IN and may belong to constant or signal classes, being implicitly 

constants. 

Function call can be done only in expressions, according to the following syntax:

function_name(list_of_actuals)



Functions
For a constant, the actual parameter may be a constant or an expression, for a 

signal, the actual may be only a signal. 

Association between formal and actual parameters can be positional or by name.

Functions MAY NOT contain WAIT statements and may not assign values to 

signals. 

In general functions do not have side effects.

Example of a function that detects the rising edge of a signal:

FUNCTION rising_edge (SIGNAL s: BIT) RETURN BOOLEAN IS

BEGIN

 RETURN (s=‘1’ AND s’EVENT AND s’LAST_VALUE=‘0’);

END FUNCTION rising_edge;

Most frequent utilization of functions:

 - for conversions

 - resolution functions



Conversion functions

In VHDL there are few cases when we can use cast-type conversion, like 

(INTEGER) x or (REAL) y. In general conversion functions are needed.

Example:

TYPE mvl IS (‘X’, ‘0’, ‘1’, ‘Z’);

TYPE fourval IS (X, L, H, Z);

FUNCTION mvl_to_fourval(v: mvl) RETURN fourval IS

BEGIN

 CASE v IS

  WHEN ‘X’ => RETURN X;

  WHEN ‘0’ => RETURN L;

  WHEN ‘1’ => RETURN H;

  WHEN ‘Z’ => RETURN Z;

 END CASE;

END FUNCTION;



Conversion with look-up table
The conversion is more efficient if look-up tables are used instead of functions (the function 

calls introduce an overhead), like in the following example:

entity look_up_table_2 is

generic (tp: time:=5ns);

end;

architecture a of look_up_table_2 is

type mvl is ('Z', '0', '1', 'X');

type fourval is (Z, L, H, X);

type look_up is array(mvl) of fourval;

CONSTANT to_fourval: look_up:=('Z'=>Z, '0'=>L,'1'=>H,'X'=>X);

SIGNAL fv0,fv1,fv2: fourval;

SIGNAL mvl1,mvl2: mvl;

SIGNAL s1, s2: look_up;

BEGIN

Process(mvl1)

Begin

fv1 <= to_fourval(mvl1) after 1ns;

end process;



process(mvl2)

begin

fv2<= to_fourval(mvl2) after 1ns;

end process;

fv0 <= to_fourval(mvl'('Z')) after tp, to_fourval('0') after 2*tp, 

to_fourval('1') after 3*tp, to_fourval('X') after 4*tp;

mvl1 <= 'X' after 20ns, '1' after 30ns, '0' after 40ns, 'Z' after 50ns;

mvl2 <= '0' after 40ns, '1' after 70ns;

s1 <= ('X'=>X, '1'=>H, '0'=>L, 'Z'=> Z) after tp, ('X'=>Z, 'Z'=>X, 

'0'=>H, others=>L) after 2*tp;

s2 <= (others=>L) after tp, (L,H,X,Z) after 2*tp;

end architecture;

Conversion with look-up table



Signal diagram

Fig 10. Signal diagram for the previous example of conversion with look-up table.



Resolution functions

• Are used in order to resolve the value of a signal when 
the signal has more than one source (driver).

• In VHDL is illegal if a signal with more than one driver is 
not resolved.

• The resolution function:
– Is written by the programmer

– Is called by the simulator:

• When at least one of the signal’s driver has an event.

• The resolution function will return a value obtained from the values 
of all signal’s drivers. 

• Unlike other HDLs, in VHDL there aren’t predefined 
resolution functions.



Overloading

• Sometimes we want to have two subprograms with the 
same name, case when we say that the subprograms 
are overloaded
– For example a subprogram named count, which counts bits, and 

another subprogram, named also count, which counts integers

• A call to such subprograms is ambiguous, hence wrong, 
if we cannot identify the called subprogram.

• Subprogram identification can be based on:
– Subprograms names

– The number of actual parameters

– Type and order of the actual parameters

– The name of formal parameters (if the call uses the association 
by name)

– The type of result (at functions)



Operator overloading

• When a standard VHDL operator is made 
to behave differently we say that we have 
an operator overloading

– Usually we want to extend the operator for 
operands of different types than in the case of 
the standard operator

– When the new operator is declared, its name 
is put between citation marks, in order to be 
able to call it as an operator

• The operator may be called as a function, too.



Example of operator overloading
--Operator definition

FUNCTION “+” (op1, op2: BIT_VECTOR) RETURN BIT_VECTOR;

FUNCTION “-” (op1, op2: BIT_VECTOR) RETURN BIT_VECTOR;

TYPE mvl IS (X, L, H, Z);

FUNCTION “OR”(l, r: mvl) RETURN mvl;

FUNCTION “AND”(l, r: mvl) RETURN mvl;

…

--Operator call

VARIABLE x,y,z1,z2: BIT_VECTOR(3 DOWNTO 0);

VARIABLE a1, b1, c1,c2: mvl;

z1:=x+y;-- standard notation for operators

z2:=“-”(x,y);-- standard notation for functions

c1:=a1 AND b1;-- standard notation for operators

c2:= “OR”(a1,b1);--standard notation for functions


	Slide 1: Subprograms
	Slide 2: Subprograms
	Slide 3: Subprograms: specification
	Slide 4: Specification: parameters
	Slide 5: Subprogram parameters
	Slide 6: Subprograms: declarations
	Slide 7: Specification: statements
	Slide 8: Procedures
	Slide 9: Procedures
	Slide 10: Procedures
	Slide 11: Declaration versus specification
	Slide 12: Declaration versus specification
	Slide 13: Functions
	Slide 14: Functions
	Slide 15: Conversion functions
	Slide 16: Conversion with look-up table
	Slide 17: Conversion with look-up table
	Slide 18: Signal diagram
	Slide 19: Resolution functions
	Slide 20: Overloading
	Slide 21: Operator overloading
	Slide 22: Example of operator overloading

