
Advanced topics

Lecture 7

Outline

• 7.1. Resolution functions

• 7.2. Guarded signals. Disconnection

• 7.3. GENERATE statement

Resolution functions

• Are used in order to resolve the value of a signal when
the signal has more than one source (driver).

• In VHDL it is illegal if a signal with more than one driver
is not resolved.

• The resolution function:
– Is written by the programmer

– Is called by the simulator:

• When at least one of the signal’s drivers has an event.

• The resolution function will return a value obtained from the values
of all signal’s drivers.

• Unlike other HDLs, in VHDL do not exist predefined
resolution functions.

Resolution functions

• A resolution function
– Has only one (input) parameter

• Which is always an unconstrained array with elements
having the type of the signal

– And returns a single value:
• The value has the same type as the signal and it is named

resolved value

– The input parameter is an unconstrained array
because when the resolution function is written we
don’t know how many drivers will have the signal
when the function will be called.

• For a resolved signal (declared as a resolved
signal) the resolution function will be called even
if the signal has a single driver.

Declaring a resolved signal

A wrong example:

TYPE fourval IS (X,L,H,Z);

SUBTYPE fourval_rez IS frez fourval;

-- frez is the resolution function

-- It is wrong because the resolution function was not specified or declared.

In conclusion, in order to declare a resolved signal there is a sequence that must

be followed:

PACKAGE frezpack IS

 TYPE fourval IS (X,L,H,Z);

 TYPE fourval_vector IS ARRAY(NATURAL RANGE<>) OF

fourval;

 FUNCTION frez(t: fourval_vector) RETURN fourval;

 SUBTYPE fourval_rez IS frez fourval;

END PACKAGE frezpack;

Declaring a resolved signal
A resolved signal can be declared in two ways:

 1. as a resolved subtype

 2. by using the resolution function in the signal declaration.

Example (continued):

USE WORK.frezpack.ALL;

ENTITY ex IS

END;

ARCHITECTURE resolved_e OF ex IS

 SIGNAL s1,s2: fourval_rez;-- first way

 SIGNAL s3: frez fourval;--second manner

BEGIN

…

END ARCHITECTURE;

Resolution functions : example
A resolution function should be associative and commutative because its returned

result should not depend on the order in which the inputs of the function (i.e., the

drivers of the signal) are processed, since this order cannot be controlled by the

programmer.

Example of resolution function for the type fourval:

The strength of the values of the type fourval:

X

HL

Z

The

strength

decreases

X means undefined value,

Z means high impedance.

L and H have equal strength.

When at least one driver is L and one H, the resolution function will return X

(there is a conflict).

Resolution functions : example

The table that describes the behaviour of the resolution function :

X L H Z

X X X X X

L X L X L

H X X H H

Z X L H Z

Resolution functions : example
The function from example:

PACKAGE BODY frezpack IS

FUNCTION frez(t: fourval_vector) RETURN fourval IS

 VARIABLE result: fourval:=Z;--it is initialized with

 --the weakest value of the type fourval

BEGIN

FOR i IN t’RANGE LOOP --t’RANGE processes the entire array t

 CASE t(i) IS

 WHEN X => result:=X; RETURN result;

 WHEN L=>

 CASE result IS

 WHEN X|H => result:=X;

 RETURN result;

 WHEN L|Z => result:=L;

 END CASE;

 WHEN H=>

 CASE result IS

 WHEN X|L => result:=X;

 RETURN result;

 WHEN H|Z => result:=H;

 END CASE;

 WHEN Z => NULL;--result remains unchanged

 END CASE;

END LOOP;

RETURN result;

END FUNCTION frez;

END PACKAGE BODY;

Remark: In this case the function could have been implemented with IF instead of

CASE, but with CASE it is more general.

Resolution functions for buses

• If there are several devices connected to a bus, we have
to take care that a single device controls the bus at a time:
– We have to treat the case when more than one device attempt to

control the bus
• => it is a conflict

• That will be signalled by the resolution function by returning a special
value “multiple drivers”

– We have to treat also the case when no device controls the bus:
• The resolution function will return a special value, “not driven”

• A signal (device) that does not control the bus will have the value “not
driven”, too.

• These special values may be taken from the unused
values of the bus (e.g. negative values for addresses) or

• If there aren’t any unused values then
– We will transform the bus type in a RECORD

– We add one more fields to the bus values

Example
Suppose that we have a data and address bus, and the addresses values can be

only nonnegative integers, hence we can chose negative values for addresses as

special values.

PACKAGE busrez IS

 TYPE xtype IS RECORD

 addr: INTEGER;--has only values >=0

 data: INTEGER;

 -- supplementary_field: INTEGER;

 END RECORD;

 CONSTANT notdriven: xtype:=(-1,-1);

 CONSTANT multipledrivers: xtype :=(-2,-2);

 TYPE xtype_vector IS ARRAY(NATURAL RANGE <>) OF xtype;

 FUNCTION xf(t:xtype_vector) RETURN xtype;

 SUBTYPE xbus IS xf xtype;

END PACKAGE busrez;

PACKAGE BODY busrez IS

FUNCTION xf(t:xtype_vector) RETURN xtype IS

 VARIABLE result: xtype:=notdriven;

 VARIABLE count: INTEGER:=0;

BEGIN

IF t’LENGTH=0 THEN --’LENGTH attribute that returns the length of an array

 result:=notdriven;

 REPORT “no driver” SEVERITY WARNING;

END IF;-- this case can appear only for guarded signals, whose drivers can be

--disconnected

FOR i IN t’RANGE LOOP

 IF t(i) /= notdriven THEN

 count := count +1;

 result:=t(i);

 END IF;

IF count>1 THEN

 result:=multipledrivers;

 REPORT “more than one driver !” SEVERITY ERROR;

 RETURN result;

END IF;

END LOOP;

IF count=0 THEN

 REPORT “zero drivers !” SEVERITY WARNING;

END IF;

RETURN result;

END xf;

END PACKAGE BODY busrez;

7.2. Guarded signals
•Signal declaration has the following syntax:

SIGNAL list_of_signals: [resolution_function] signal_type [signal_kind] [:=expression];

where signal_kind can be BUS or REGISTER

•Definition: the guarded signals are special signals declared BUS or REGISTER.

•Guarded signals must be resolved signals, hence they must have a resolution function.

•Guarded signals may be assigned values only inside guarded blocks.

•Towards guarded signals we can make:

 - concurrent guarded assignments or

 - sequential assignments, but

 - we CAN NOT make concurrent non-guarded assignments.

Guarded signals

•Inside a guarded block, when the signal GURAD becomes FALSE, the driver of

the guarded signal will be disconnected

•Disconnection takes place after a time period named disconnect time.

•When the guard is TRUE, the signal driver receives values according to the

signal assignment statement.

•In the case of an unguarded signal that has a concurrent guarded assignment,

when the guard becomes FALSE the signal driver is not disconnected, but the

driver maintains the previous values, without taking into account the new values

that could have been generated by the signal assignment statement (the signal

driver is deactivated)

•See net example.

• The time after which takes place the disconnection of a driver of the guarded

signal can be specified by disconnect_specification (after the signal declation):

DISCONNECT name_of_guarded_signal: signal_type AFTER time_expression;

• Diconnection of a driver is an event, hence the resolution function will be called.

Example
ARCHITECTURE guarded_ex OF example IS

SIGNAL guarded_signal: wired_or BIT REGISTER;

SIGNAL unguarded_signal: wired_and BIT;-- this signal does not have to

-- be resolved

BEGIN

b: BLOCK(guard_expression)

BEGIN

 guarded_signal <= GUARDED expression1 AFTER time1;

 unguarded_signal <= GUARDED expression2 AFTER time2;

END BLOCK b;

END ARCHITECTURE;

The example is equivalent with:

Example (cont’d)
ARCHITECTURE guarded_ex OF example IS

SIGNAL guarded_signal : wired_or BIT REGISTER;

SIGNAL unguarded_signal : wired_and BIT;--no need to be resolved

BEGIN

b: BLOCK(guard_expression)

BEGIN

p1: PROCESS

BEGIN

 IF GUARD THEN

 guarded_signal <= expression1 AFTER time1;

 ELSE

 guarded_signal <= NULL; -- is disconnected

 -- signal <= NULL means driver disconnection

 END IF;

 WAIT ON GUARD, signals_in_expression1;

END PROCESS p1;

p2: PROCESS

BEGIN

 IF GUARD THEN

 unguarded_signal <= expression2 AFTER time2;

 END IF;

 --there is no ELSE since NOTHING HAPPENS when

 -- GUARD = FALSE

 WAIT ON GUARD, signals_in_expression2;

END PROCESS p2;

END BLOCK b;

END ARCHITECTURE;

Differences between BUS and

REGISTER
• Concerning the place where they can be:

– Guarded BUS signals may be both:
• Locally declared signals intside an architecture

• Ports of an entity

– Guarded REGISTER signals may be:
• Only locally declared signals inside an architecture.

• Concerning how the last driver is disconnected:
– For a guarded BUS signal:

• If all drivers are disconnected, it must be specified the value that the
signal will have in this case

• It means that the resolution function must specify a value for the case
when all drivers are disconnected.

– For a guarded REGISTER signal:
• When the last driver is disconnected, the signal maintains the previous

value

• The resolution function is not called when the last driver is
disconnected

• => the resolution function doesn’t have to specify a value for this case.

Example of 4:1 multiplexer

implemented with guarded signals

USE WORK.my_pack.ALL; -- my pack contains the resolution function wired_or

ENTITY mux IS

 GENERIC(mux_del: TIME:= 5ns);

 PORT(din: IN BIT_VECTOR(3 DOWNTO 0);

 sel: IN BIT_VECTOR(1 DOWNTO 0);

 z: OUT BIT);

END mux;

ARCHITECTURE with_guarded_signals OF mux IS

SIGNAL temp: wired_or BIT BUS; -- in this case it can be REGISTER, as well

BEGIN

b0: BLOCK (sel=“00”)

BEGIN

 temp<= GUARDED din(0);

END BLOCK b0;

b1: BLOCK (sel=“01”)

BEGIN

 temp<= GUARDED din(1);

END BLOCK b1;

b2: BLOCK (sel=“10”)

BEGIN

 temp<= GUARDED din(2);

END BLOCK b2;

b3: BLOCK (sel=“11”)

BEGIN

 temp<= GUARDED din(3);

END BLOCK b3;

z <= temp AFTER mux_del;

END ARCHITECTURE;

-- in this case it is not very important how is the resolution function, because

-- the signal temp will have only one driver at a time, the rest of 3 drivers being

-- disconnected.

7.3. GENERATE statement

• It is used mostly for describing regular

structures

• represents a conditional compiling

mechanism in VHDL

• The syntax is:

label_id: generation_scheme GENERATE

 concurrent_statements

END GENERATE [label_id];

GENERATE (cont’d)

• The generation scheme can be of type:
– FOR : the index doesn't have to be declared

– IF : there is neither ELSIF nor ELSE

– IF and FOR don’t have any execution semantics
(nothing to do with the sequential statements IF
and LOOP FOR)

• Concurrent statements from the body of GENERATE are
most typically (but not necessarily) component
instantiation statements.

• The compiler expands the code from GENERATE.
– E.g., if a generation scheme of type FOR with 5 iterations is

used, and if in the body of GENERATE there is a component
instantiation statement, then in the expanded code there will be
5 component instantiation statements.

Example
We model a 4 bits shift register using GENERATE. The register consists of 4 D

flip-flops, like in figure 11.

The D flip-flop description:

ENTITY dff_1 IS

 GENERIC(tp: time:=1ns);

 PORT(d, clk, reset: IN BIT;

 q, qb: OUT BIT);

END dff_1;

ARCHITECTURE behave OF dff_1 IS

BEGIN

PROCESS(reset, clk, d)

BEGIN

 IF reset='0' THEN

 q<='0' AFTER tp;

 qb<='1' AFTER tp;

 ELSIF(clk='1') AND clk'EVENT AND clk'LAST_VALUE='0‘ THEN

 q<= d AFTER tp;

 qb<=NOT d AFTER tp;

 END IF;

END PROCESS;

END ARCHITECTURE;

CONFIGURATION dff_cfg OF dff_1 IS

 FOR behave END FOR;

END CONFIGURATION;

-- the shift register :

ENTITY shift_reg IS

 GENERIC(len: NATURAL:=4);

 PORT(reset, clock, a: IN BIT; b: OUT BIT);

END shift_reg;

D D D D

clk clk clk clk

Q Q Q Q

reset reset reset reset

reset

clock

b
a

z(0) z(1) z(2) z(3) z(4)

The shift register

shift_reg

Fig 11. The shift register realized with D flip-flops

FOR type generation scheme

-- GENERATE statement with

-- FOR generation scheme

ARCHITECTURE shift_gen_1 OF shift_reg IS

 COMPONENT dff IS

 GENERIC(tp:TIME:=1ns);

 PORT(d, clk, reset: IN BIT;

 q, qb: OUT BIT);

 END COMPONENT;

 SIGNAL z: BIT_VECTOR(0 TO 4);

BEGIN

 z(0)<=a;

 g: FOR i IN 0 TO 3 GENERATE

 dffx: dff PORT MAP(z(i), clock, reset, z(i+1), OPEN);

 END GENERATE;

 b<=z(4);

END shift_gen_1;

GENERATE with IF and FOR

generation schemes

The drawback of the previous model is that, inside the GENERATE statement,

the flip-flops from the edges of the shift register are not treated in the same

way as those from inside of the shift register. We can give a uniform treatment

if we combine the FOR and IF generation schemes:

-- GENERATE with generation schemes of type FOR and IF

ARCHITECTURE shift_gen_2 OF shift_reg IS

 COMPONENT dff IS

 GENERIC(tp:TIME:=1ns);

 PORT(d, clk, reset: IN BIT;

 q, qb: OUT BIT);

 END COMPONENT;

 SIGNAL z:BIT_VECTOR(1 TO len-1);

BEGIN

 g1: FOR i IN 0 TO (len-1) GENERATE

 g2: IF i=0 GENERATE

 dffx: dff PORT MAP(d=>a, clk=> clock,

 reset=>reset, q=>z(1), qb=>OPEN);

 END GENERATE g2;

 g3: IF i=(len-1) GENERATE

 dffx: dff PORT MAP(d=>z(len-1), clk=>clock,

 reset=>reset, q=>b, qb=>OPEN);

 END GENERATE; --g3

 g4: IF (i>0) AND (i<len-1) GENERATE

 dffx: dff PORT MAP(z(i), clock,

 reset, z(i+1), OPEN);

 END GENERATE g4;

 END GENERATE; -- g1

END ARCHITECTURE shift_gen_2;

Configuration for GENERATE
-- A configuration for the architecture shift_gen_2 will be:

CONFIGURATION cfg_gen OF shift_reg IS

FOR shift_gen_2

 FOR g1

 FOR g2

 FOR ALL: dff USE CONFIGURATION WORK.dff_cfg;

 END FOR;

 END FOR;--g2

 FOR g3

 FOR ALL: dff USE ENTITY WORK.dff_1(behave);

 END FOR;

 END FOR;--g3

 FOR g4

 FOR ALL: dff USE ENTITY WORK.dff_1(behave);

 END FOR;

 END FOR;--g4

 END FOR; -- g1

END FOR; -- shift_gen_2

END cfg_gen;

entity test_shift_reg is

end;

architecture a_test of test_shift_reg is

 COMPONENT shift_reg IS

 GENERIC(len: NATURAL:=4);

 PORT(reset, clock, a: IN BIT; b:OUT BIT);

 END COMPONENT;

 SIGNAL insig, r, cl, outsig: BIT;

BEGIN

 l: shift_reg PORT MAP(r, cl, insig, outsig);

 cl<=NOT cl AFTER 50ns;

 r<='1', '0' after 3ns, '1' after 40ns;

 insig<='1' after 145ns, '0' after 380ns, '1' after 1680ns;

end;

A test entity for the shift register

configuration cfg_test of test_shift_reg is

for a_test

 for l: shift_reg use configuration work.cfg_gen;

 end for;

end for;

end cfg_test;

	Slide 1: Advanced topics
	Slide 2: Outline
	Slide 3: Resolution functions
	Slide 4: Resolution functions
	Slide 5: Declaring a resolved signal
	Slide 6: Declaring a resolved signal
	Slide 7: Resolution functions : example
	Slide 8: Resolution functions : example
	Slide 9: Resolution functions : example
	Slide 10
	Slide 11: Resolution functions for buses
	Slide 12: Example
	Slide 13
	Slide 14
	Slide 15: 7.2. Guarded signals
	Slide 16: Guarded signals
	Slide 17: Example
	Slide 18: Example (cont’d)
	Slide 19
	Slide 20: Differences between BUS and REGISTER
	Slide 21: Example of 4:1 multiplexer implemented with guarded signals
	Slide 22
	Slide 23: 7.3. GENERATE statement
	Slide 24: GENERATE (cont’d)
	Slide 25: Example
	Slide 26
	Slide 27: The shift register
	Slide 28: FOR type generation scheme
	Slide 29: GENERATE with IF and FOR generation schemes
	Slide 30
	Slide 31: Configuration for GENERATE
	Slide 32: A test entity for the shift register
	Slide 33

