
Network simulation

Lecture 8

Emulation vs. simulation

• Emulation: the functioning of a device or of a system is replicated as close
to reality as possible
– Usually the emulated system can be replaced with the emulating system

• The real (i.e. emulated) system is usually faster than the emulating system

• Example: emulation of a microprocessor

– Network emulation
• Is realized in general by describing (in formal language or another formalism) of the

protocols involved, according to the specifications that describe these protocols

• Simulation: the functioning of a device or system is described at a more
abstract and less precise level of representation
– Some properties of the system are emphasised and hence included into the

simulation model

– While other properties, which do not seem to influence (too much) the
investigated performance issues, are neglected

• Example: if we are interested in the performance of some algorithms used at data
link level (e.g. scheduling algorithms), we may neglect some (properties of) higher
level protocols (transport, application) or users’ mobility in a mobile network.

• However, the aspects that we do not include in the simulation model can have an
influence on the performance in a real-life system (e.g., in mobile data networks, the
interaction between TCP transport protocolul and lower level protocols can produce
performance degradation).

Example of emulator: GPRSim
GPRSim: GPRS

emulator developed at

Aachen Univesity during

several years.

GPRS protocols are

specified in SDL

Uses a library in order to

convert the SDL

specifications in C++

Can generate several

traffic types

Contains features for

data processing and

visualization

Its performance have

been compared with the

first real-life GPRS

networks.

Figure 3 ‘GPRS/EGPRS simulator

GPRSim’ from [Stuckmann_ICN01]

Network simulators

• Used for simulation models in networking, but also in
other domains
– Can be modelled production lines (for cars or hamburgers)

• For a simulation model, the question is how detailed
should it be ?
– The answer depends on the purpose and scope of the

model:
• Academic: usually less detailed (the model is realized by small

teams or even by only one person), focused on the studied
problem/problems

• Industrial: the degree of complexity (and detail) increases as the
model is closer to commercial utilization: from simulation to
emulation and then prototype.

Commercial vs. non-commercial

simulators
• Commercial

– Developed by companies in order to be sold (can be very expensive)

– Offer:
• Performance guarantees

• Possibly cod generation (C, C++, VHDL, etc.) from the model

• Example: SES/Workbench (from Hyperformix), OPNET

• May have cheap or free academic versions (e.g. OPNET)

• Utilization courses (training): sometimes their documentation is difficult to
use without training !

• Non-commercial (Free)
– Usually developed by researchers or in universities for research

purposes

– Then a community of users/developers is formed
• Usually a big community means a more successful simulator !

– Can be :
• Of similar performance like the commercial ones

• Very popular and accepted by academic community (e.g. to publish the
simulation results at scientific conferences and journals)

• Examples: ns2, NS3, cnet, OMNeT++,

• Can have commercial versions ! (e.g. OMNeT++)

Simulators: utilization

• Some simulators offer modules with predefined functions,
that can be parametrized.
– Examples:

• Data source (generator) modules
– Parametrized: data generation rate (probability distribution function,

mean value, etc)

• Server modules:
– Parametrized: service rate (probability distribution function, mean value,

etc)

– They are easy to use, mostly for simple models, even by “non-
experts” (i.e., people that are not able to write computer
programs)

– Usually they are very “graphical” (icons that can be parametrized)

– If we want to change the functioning of a module, it can be very
difficult:

• It can be necessary to modify some internal functions, not necessarily
well documented!

• This happens usually with commercial simulators (example:
SES/Workbench)

Simulators: utilization
• Other simulators are open source:

– Usually they are less “graphical”, although they have some graphical interface
• The user has to write code, not only to change some parameters or settings by

mouse

• Usually the code is in a general-purpose programming language (C++, Java)

• Sometimes the module interconnection is described in “text mode”

• They are addressed rather to expert users, capable to write computer programs

• If necessary, even the basic functions can be modified (e.g., the simulation kernel),
but this can be a laborious and even risky thing

• Usually they have examples of modules (generator, server, sink, etc.), whose code
can be modified or extended.

• Example: OMNeT++

• Simulators close to emulators (ns2, NS3):
– Implement existing protocols (e.g. TCP, IP, UDP, etc) or modules (routers,

switches, etc) in some internal format

– The simulation model “assembles” these protocols or modules

– Can produce long, but very precise simulations, whose results are easily
accepted by the scientific community

– May have limitations (a certain protocol, module, etc, is not yet implemented).

– OMNeT++ has frameworks that implement protocols (MANET, INET)

• Didactic simulators (cnet): simplified, hard to extend, difficult to write
programmes (models).

Random numbers

• Simulators include random number generators

– different probability distribution functions (e.g. uniform,

exponential, etc) are provided

– Usually the numbers generated are pseudo-random: they

are generated by software tools, and they repeat after a

very large number of generated values

– When simulation repeats, the same “random” numbers

are generated!

• This is useful in order to compare the results from different

simulations

• If we want to change the set of generated random numbers, this

has to be specified explicitly, e.g. by choosing a different seed for

the algorithm that generate random numbers

Simulation results

• Most simulators have tools for processing simulation
results
– Statistical values can be collected: mean, minimum and

maximum values, standard deviation, number of samples, etc

– Can collect traces: all values taken by a parameter (delay,
number of lost packets, etc.) during simulation or during certain
time intervals

• The traces can be visualized by built-in tools, or by general-purpose
tools (gnuplot, Excel, etc)

• Resulted trace files can be very big !

– For some simulators, internal format of the files with results
(traces, statistics) are simulator-specific (although of text type in
general) and need post-processing (with Pearl, etc)

– Might be more convenient to collect the results in the format that
we want and then to process the results (with gnuplot, Excel,
etc).

Validating the simulation results

• First we set up the simulation model and check its correctness
– Use the graphical interface to visualize different simulation scenarios

– Watch the evolution of different parameters (packet delay, number of lost
packets, etc)

– It is recommended to display many messages like “arrived in module X, the
value of the parameter Y is …”

– Build deterministic scenarios (avoid random numbers) at the beginning

– Imagine different simulation scenarios, including extreme situations (all
queues are empty, what does the scheduling algorithm do in this case?)

– Remove errors, until the model works as we wish

• Usually these simulations, used to set up the model, are not very
long
– It means that it is possible that some errors will appear only for longer

simulations !

Validating the simulation results

• Then collect simulation results
– Usually work in “batch” mode, not graphical

– Remove unnecessary messages (e.g., that were used for debugging in
previous stages), because they slow down the simulation

– Run long simulations, to see if the model is stable

– See if the simulation results make sense !

– If they don’t, maybe there are errors in the model

– Remove errors, if they appear in this stage (usually they do !!!)

– These errors can be hard to debug, e.g. those related to memory
allocation

• The errors can show up at different simulation moments, depending if we
work in graphical mode or not !

– Test the model for extreme situations (e.g. very high network load), but
take care to be still stable

• Example of unstable system: if a server having an infinite queue receives
data at a higher rate than its own service rate, then the queue will grow in
time, and hence the packet queueing time will grow as the simulation
progresses. In this case the mean value of the delays will be meaningless
(bigger for longer simulations)

Confidence in simulation results

• If we have a result like “the average value of packets delay is x”, can we
trust this result ?

• Or, in other words, is the simulation “long enough” ?
– Empirical, not very reliable method: run a simulation for a duration T (T is

simulation time), and then for 2T; if the results are “close” then probably the
simulation is long enough.

– It is desirable to use confidence intervals

– Or at least to run a big number of simulations (> 10 or tens of simulations) with
different random numbers (take care to avoid overlapping the sets of random
numbers) and compare the simulation results, to see if they are “close”.

• It is important to use probability distribution functions suitable for the
modelled situations, or, if possible, sets of real data

– There are trafic types (e.g. video streaming) that cannot be modelled by
probability distribution functions

• If there appear anomalies (e.g. the graphic of a parameter has an
increasing trend, but there is a region where the values decrease), try to
find an explanation.

• The anomalies can be caused by errors in the model, but not necessarily:
– E.g., if there are certain relations between numbers, like for round robin type

scheduling algorithms, or, more generally, relations between integer numbers.

OMNeT++

• Can be downloaded from the address: www.omnetpp.org

• It was developed by Andras Varga, then by other researchers and
programmers, initially for Linux systems, then also for Windows and other OS

• It is free, but it has also a commercial version

• Current version is 5.x

• May have serious compatibility problems with previous versions
– => migration can be difficult, needing lots of code changes

– Causes:
• Certain features or instructions are no longer supported

• Big changes are introduced:
– E.g, starting from version 4.0 the simulation time is an extended integer with units (seconds, etc)

(like physical types in VHDL)

– Before version 4.0 the simulation time was of type double

• In order to learn to use the simulator
– I recommend to start with the included tutorial

– And to continue with understanding and changing examples from the directory
samples, for example with fifo.

– User Manual is useful, but not all chapters are equally important

• Next 9 slides contain text and figures taken as they are or with small
changes from the OMNeT++ User Manual, different versions [omnet].

OMNeT++

• OMNeT++ is an object-oriented modular discrete event
network simulator. The simulator can be used for:

• • traffic modeling of telecommunication networks

• • protocol modeling

• • modeling queueing networks

• • modeling multiprocessors and other distributed
hardware systems

• • validating hardware architectures

• • evaluating performance aspects of complex software
systems

• • . . . modeling any other system where the discrete
event approach is suitable.

General description

• An OMNeT++ model consists of hierarchically nested modules. The depth
of module nesting is not limited, which allows the user to reflect the logical
structure of the actual system in the model structure.

• Modules communicate through message passing. Messages can contain
arbitrarily complex data structures.

• Modules can send messages
– either directly to their destination

– or along a predefined path, through gates and connections (preferably).

• Modules can have their own parameters. Parameters can be used to
– customize module behaviour (e.g. data generation rate, service rate, etc)

– and to parameterize the model’s topology (e.g. the size of a gate, the number of
submodules of a certain type).

• Modules at the lowest level of the module hierarchy encapsulate behaviour.
These modules are termed simple modules, and they are programmed in
C++ using the simulation library.

Interfaces

• OMNeT++ simulations can feature varying user interfaces for
different purposes:
– debugging, demonstration (Tkenv) – graphic interface

– and batch execution (Cmdenv) – text interface.

• Advanced user interfaces make the inside of the model visible to the
user, allow control over simulation execution and to intervene by
changing variables/objects inside the model.

• This is very useful in the development/debugging phase of the
simulation project.

• User interfaces also facilitate demonstration of how a model works.

• The simulator as well as user interfaces and tools are portable: they
are known to work on Windows and on several Unix flavours, using
various C++ compilers.

Modeling concepts

• OMNeT++ provides efficient tools for the user to
describe the structure of the actual system.
Some of the main features are:

• • hierarchically nested modules

• • modules are instances of module types

• • modules communicate with messages through
channels

• • flexible module parameters

• • topology description language

Hierarchical modules

• An OMNeT++ model consists of hierarchically nested
modules, which communicate by passing messages to
each another.

• OMNeT++ models are often referred to as networks.

• The top level module is the system module. The system
module contains submodules, which can also contain
submodules themselves

• The depth of module nesting is not limited; this allows
the user to reflect the logical structure of the actual
system in the model structure.
– See figure:

• Model structure is described in OMNeT++’s NED
language.

Simple and compound modules

Figure taken from [omnet]

Simple modules in OMNeT++

• In OMNeT++, events occur inside simple modules. Simple modules
encapsulate C++ code that generates events and reacts to events,
in other words, implements the behaviour of the model.

• The user creates simple module types by subclassing the
cSimpleModule class, which is part of the OMNeT++ class library.

• cSimpleModule, just as cCompoundModule, is derived from a
common base class, cModule.

• cSimpleModule, although packed with simulation-related
functionality, doesn’t do anything useful by itself – you have to
redefine some virtual member functions to make it do useful work.

• These member functions are the following:

• • void initialize()

• • void handleMessage(cMessage *msg)

• • void activity()

• • void finish()

Functions

• In the initialization step, OMNeT++ builds the network: it
creates the necessary simple and compound modules
and connects them according to the NED definitions.
OMNeT++ also calls the initialize() functions of all
modules.

• The handleMessage() and activity() functions are called
during event processing.

• This means that the user will implement the model’s
behavior in these functions.

• handleMessage() and activity() implement different event
processing strategies: for each simple module, the user
has to redefine exactly one of these functions. (not both
!)

Functions (cont’d)

• handleMessage() is a method that is called by the
simulation kernel when the module receives a message.

• activity() is a coroutine-based solution which implements
the process interaction approach

• coroutines are non-preemptive (i.e. cooperative) threads.

• Generally, it is recommended that you prefer
handleMessage() to activity()
– mainly because activity() doesn’t scale well (you have to reserve

stack for each module that uses activity()).

• Modules written with activity() and handleMessage() can
be freely mixed within a simulation model.

• The finish() functions are called when the simulation
terminates successfully.

• The most typical use of finish() is the recording of
statistics collected during simulation.

Communication between

modules
• Many times it is necessary to read (and

maybe to modify) in a module
information form other modules

– E.g. a module named scheduler wants to
know the length of the queues from the
“user” modules

• Can be done in 3 ways:

1. Using global variables

2. Using OMNeT++ messages

3. Using modules parameters

Communication between

modules
1. Using global variables
– Advantages: efficient regarding the duration of simulation

– Drawbacks:
• Easy to make synchronization errors when accessing the global

variables

• Results an ugly code

• 2. Using OMNeT++ messages
– Advantages: is closer to reality

– Drawbacks:
• Increases simulator load and increases the duration of simulation

• There appear too many “types” of messages:
– Messages that represent data in a real system (packets, blocks of data,

etc)

– Messages that represent important signaling in a real system (e.g.
command given by the scheduler to transmit a certain number of data
blocks from a user’s buffer)

– Messages that represent information transmitted (e.g. the length of a
queue, etc.)

Communication between

modules
• 3. Using parameters

– Advantages:

• Clear distinction between data exchange and signaling

between modules

• Safer than with global variables

– Drawbacks:

• long(er) code: first change a value from a module (e.g. the

variable that stores the queue length), then change the

module parameter that store this value, then another module

reads this value

Example of simulation models

• 1. Simulation model for vertical handover

(VHO)

• 2. Simulation model for resource allocation

in a GPRS/EGPRS network

Vertical handover. Introduction
• Cells:

– A cell is a geographical area served by a Base Station – BS

– Cells allow frequency re-use (or code re-use, for CDMA networks), which enable
the coverage of a very large area (e.g., a country) with a limited amount of radio
resources (frequency spectrum).

• Rely on the fact the received signal power of a radio signal decreases with the square
distance from source to destination

• Radio resources are allocated at cell level, by the BS.

• When the mobile user (Mobile Station : MS) moves, he/she goes from one
cell to another.

• Handover (HO): the procedure by which a MS moves from one cell to
another without disconnecting from the network.

• Types of handover:
– Hard vs soft HO

• Hard HO: if the mobile user first disconnects from the BS of the old cell and then it
connects to the BS of the new cell (e.g. in GSM and GPRS)

• Soft HO: MS first connects to the new BS before disconnecting from the old BS, being
for a short time connected to both base stations (e.g. in UMTS)

– Horizontal HO vs vertical HO:
• HO is horizontal when the cells belong to the same network (the same radio access

technology and the same operator)

• HO is vertical when the MS changes not only the cell, but also the technology and/or
the operator (e.g. moves from UMTS to GPRS)

The VHO process

• The importance of VHO will increase in the future, because is
estimated that the Next Generation Networks – (NGN) will be
heterogeneous,i.e. they will consist of several sub-networks. In
different technologies (LTE, UMTS, GSM/GPRS, WLAN, even sensor
networks in 5G...)

• The user wants to be “Always Best Connected” (ABC)

• Criteria for choosing the sub-network can be:
– Quality of the received signal

– Network coverage (e.g.: very small at WLAN)

– Performance (transfer rate)

– Cost

– Battery consumption

– Traffic type:
• Background: SMS, MMS, e-mail, FTP

• Interactive: WWW

• Streaming: adio or video-streaming

• Conversational: VoIP, telenet, banking, games

– User preferences, etc

The VHO process

• VHO algorithms are in general complex, involving AI
techniques (fuzzy logic, neural networks, etc), multi-
criteria or multi-objective decision making algorithms.

• There are different opinions concerning
– The model of the heterogeneous network:

• The same operator has subnetworks in different radio tehnologies.
Todays’ networks contain 2G (GSM/GPRS), 3G (UMTS) and 4G
(LTE and LTE Advanced) subnetworks.

• The mobile user subscribes to an over the top service provider and
the MS will connect to different network operators – this model will
be more used in the future, e.g., in 5G

– Example: the user subscribe to a provider of TV over mobile, and this
provider will ensure that the MS will be connected to the most suited
operator (cost, performance)

– The decision element: MS or the network (each case has pros
and cons)

– The degree of involvement of the human user (for example to set
some preferences – like the preferred network, or to demand
cost optimization, or highest transfer rate, etc)

Modelling the VHO process

• The main problem for modelling is the different time
granularity of the events:
– Scheduling in a mobila network is made at time intervals of milli

seconds (1 ms in LTE, 10ms in UMTS, 20ms in GPRS)

– Data packets (e.g. IP packets) are generated at intervals of
seconds

– Selecting of a different cell (possibly from another sub-network)
takes place at intervals of tens of seconds or even minutes

• If we model at the scheduling level (ms), then the
resulted simulations will be very long

• Another possibility is to model at the IP packet level:
– Consider the IP packet length of 1000 – 1500 Bytes and we

estimate/compute the duration of the transmission of an IP
packet IP in different networks, according to different load and
radio conditions.

• It results the following simulation model:

Modelling a heterogeneous

network

Modelling a heterogeneous

network
• Explanations:

– gen: data generator, which generates OMNeT messages at
certain time intervals. The mesages represent files, of certain
length, application dependent

– svr: server
• Stores in queues the files created by the generator

• The queues can be per user, per user classes, traffic types , both for
downlink - DL and for UL – uplink

• Transmits a file in the network chosen by the module alg.

– alg: the algorithm that selects the sub-network

– dest: destination
• node of type sink, colects statistics and deletes the mesages

• Informes the server when a file has been transmitted completly so
that the server can transmit the next file

– Network1, Network2: two sub-networks, for example one UMTS
and one GPRS. The model of such a sub-network is detailed on
the next slide:

Example: the model of a sub-

network

The model of a sub-network

• Explanations:
– Datbuffer (databuffer): a data buffer in the sub-network, that

stores the file that is going to be transmitted on that sub-network

– Dlay (delay):

• models the delay encountered by an IP packet in that sub-network:
delay_IP = length_IP_packet/(1000* transfer_rate)

• The delay depends on the sub-network load and on the quality of
the radio link between MS and BS.

– Loop: loop node

• each file goes through the module loop

• Every time when the file arrives to the loop node, the file length will
be decreased with the length of an IP packet

• When the file length becomes zero, it means that the file has been
completely transmitted, hence the OMNeT message that represents
the file will be sent to the node dest.

The model of a sub-network

• Explanations: (continued):
– genLoadCond: load conditions generator

• Models the load of the sub-network (more precisely, the load
of the cell that we model)

• We consider that at random intervals of several tens of
seconds the cell load increases or decreases with an user
(MS)

• Depends on the sub-network type (UMTS, GPRS,...)

– genRadioCond: radio conditions generator:
• Models the quality of the radio link between MS and BS, for

the modelled user

• In a mobile network, a user’s data are encoded according to
the radio conditions, such that, if the radio conditions are
good, there are used few(er) code bits and hence a higher
transfer rate results for a user (because the amount of data
(user’s data + code bits) sent on a radio channel is fixed)

• Depends also on the type of the network.

The model of an UMTS cell

• We consider that a cell has a maximum capacity of 1Mb/s (mega bits per
second)

• An MS can transmit with one of the following transfer rates (in kb/s):
– {32,48,64,80,96,112,128,192,256,320,384}

• We start from an initial cell load (e.g. 512 kb/s)

• At intervals of several tens of seconds we consider that a MS enters or
leaves the cell =>

– the cell load increases, respectively decreases, with one of the above values, but
without exceeding the maximum load capacity.

• The remaining cell capacity may be allocated to the modelled MS, up to the
limit of 384 kb/s, according to the radio conditions experienced by the MS.

• Radio condition generator generates randomly one of these values, which
limits the transfer rate (transfer_rate) of the modelled MS.

• Example: if after modelling the cell load, for the MS remains a capacity of
256 kb/s, then

– if genRadioCond generates a value of 32kb/s, MS will have a transfer_rate = min
(256 kbps, 32kb/s) = 32 kbps

– if genRadioCond generates a value of 320kb/s, then MS will have a
transfer_rate= min(256kb/s, 320 kbps) = 256 kbps.

The model of a (E)GPRS cell

• We consider that one of the frequencies from the cell is entirely allocated for EGPRS =>
there are 8 TS (time-slots) allocated for EGPRS in the cell.

• The number of MSs multiplexed on the same TS is limited to 5 => in the cell we will have
8*5=40 “parts of time slot” (Parts_of_TS)

• A MS can be allocated between 1 and 4 TS in DL (downlink), between 1 and 2 TS in UL
(uplink)

• We start from an initial cell load, in Parts_of_TS.

• When a MS comes into cell / leaves the cell the number of Parts_of_TS_in_use
(occupied) will increase / decrease with a number between 1 and 4, taking care that the
number of Parts_of_TS_in_use to remain in the interval [0, 40].

• It results a number of available parts of TS: Nb_of_Parts_available = 40 -
Parts_of_TS_in_use

• MS receives a number of TS called Nb_of_parts_of_TS =4 TS, if Nb_of_Parts_available
>=4.

• Then it results the new value for Parts_of_TS_in_use.

• Then we compute the number of MS per TS (Nb_of_MS_per_TS) as being
– Ceil(Parts_of_TS_in_use/8), where ceil() represents the smallest integer number greater or equal

than a real number, e.g. ceil(2.1) = 3.

• The transfer rate of a MS is calculated with the formula:
– Transfer_rate= Nb_of_parts_of_TS * Thr_per_TS / Nb_of_MS_per_TS, where Thr_per_TS

(throughput per time slot) is given by the modulation and coding scheme, named MCS

– In EGPRS there are 9 MCS, having Thr_per_TS between 8.8kb/s at MCS1 and 59.2 kb/s at
MCS9.

PDA Wireless system

Laptop Mobile phone

Base Station

Different equipments in a cell communicate with the Base

Station (BS)

Resource allocation in cellular data

networks (e.g. GPRS). The problem

description

Parameters of the Resource

Allocation problem

• N users in a cell which can send (or receive) data

• Bandwidth: B<=8 Packet Data Traffic Channels
(PDTCH’s) available every controller cycle (20ms)

• P levels of precedence and/or priority

• K active users (send or receive data)

• Algorithms for:
– Admission control (AC): decision to admit or not a user in the

system

– Transmission control (TC): sharing the B channels among the

active users

• Packet Control Unit (PCU), part of BSS, performs
the TC algorithms

K

active

users

user[1]

user[0]

user[2]

user[K]

user[N-1]

B=8

PDTCHs

every

20ms

user[K-1]

N-K

in-

active

users

N

users

in a

cell

Transmission control

• Level: Medium Access Control (MAC), Radio Link
Control (RLC)

• Information available for each user:
– The number of waiting data blocks

– Priority/precedence level

• Requirements for resource allocation algorithms:
– Simple, fast, easy to implement (the TC algorithms are

implemented in hardware, i.e. in the PCU)

– Low delay, high throughput

– Possibility to implement priority and/or precedence

Admission control

• Users can have different:
– Precedence levels (high, normal, low)

– Priority levels

– Coding schemes

– Types of data (FTP, WWW, streaming, etc)

– Mobility characteristics

• More complex than the problem of
transmission control: AI algorithms or
heuristics

• Goals (TC+AC):
– QoS over GPRS

– Congestion alleviation

The simulation model for TC

• We consider the K users active in a cell

• Network resources consist of B=8 radio channels

• Packet Control Unit (PCU), i.e. the scheduler, has a
period of 20ms (scheduling cycle)

• Every 20ms the B channels are shared between the K
users according to a scheduling algorithm
– E.g. for WRR (Weighted Round Robin):

• Each user has a weight Wi, an integer number, and at each
scheduling cycle the user receives Wi radio channels, if available

• Evidently, not all the K users are served in each scheduling cycle

• Possibile values: K: 3 to 10 users, Wi can be 1, 2, 4 or 8.

• We consider 3 types of users, e.g. W=1 economy class, W=2,
standard class, and W=4 or 8 premium class.

Simulation model for a user

• A user has a data generator module and a buffer
module (a queue)

• The data generator:
– Creates a certain number of data blocks at certain

time intervals
• We can consider that all data blocks have a length =1

• The number of generated data blocks can be fixed or
variable (random)

– We can consider that such a group of data blocks is either an
IP packet or a file, or a web page

• The intervals for generating data are pseudo-random,
according to some probability distribution functions.

• We have to take care that the users do not generate more
data that can be sent by the network

The model for a user: the buffer

• Uses the queue data structure from omnet

• When new data blocks arrive from the generator,
it inserts them into the queue and updates the
queue length

• The scheduler (PCU) reads the queue lengths

• Receives commands from the scheduler:
– A command message from the scheduler contains the

number of data blocks that will be transmitted by the
buffer in the current scheduling cycle

– The Buffer will transmit that number of data blocks to
the destination (an omnet module of type sink) and
will update its queue length

The simulation model: PCU

• PCU implements the scheduling algorithm

• Works periodically, with a period of T=20ms

• At every scheduling cycle (T= 20ms) PCU finds

the queue length for each user and then it

computes an allocation of the radio resources

according to the implemented scheduling

algorithm (e.g. WRR, or another algorithm)

• Tells each user (buffer) how many data blocks

will have to transmit

The simulation model: the sink

• The module sink represents the destination for data: it
collects statistics and deletes the omnet messages.

• In theory, each user should have its own sink module

• But it is more efficient if there is only one sink for the
entire simulation model, because
– The sink collects statistics (mean, maximum, minimum values,

standard deviations, etc) about the simulation results, and these
statistics are easier processed if they are in the same module

• Will have one input for each user

• Will have to compute the transmission delays for each
data packet (or file, or web page)

• Statistics can be per user, per user class, etc.

• Can collect also trace-es for (certain) users: e.g. the
evolution in time of the packets delays for a user (during
a simulation time interval)

The simulation model

• May contain other modules:
– E.g. a module to model the radio conditions: when

they are very bad, certain data blocks are lost and
have to be re-transmitted

– A module that models the voice traffic in the GPRS
cell: it modifies randomly the number of channels B in
order to model the channels allocated to voice traffic

• This simulation model is obviously very
simplified compared to a real (E)GPRS network,
but it is still realistic.

• The AC is not included in the model, in order to
avoid increasing too much its complexity.

Scheduling algorithms

• Another possibility to implement

scheduling algorithms (used e.g., for LTE):

– each resource block (RB) is allocated to a

user, according to an auction

– A parameter p[i] is considered for each user,

the user with the biggest p[i] wins the auction

and receives the RB

– The number of RBs allocated to a user in a

scheduling cycle can be limited

Scheduling algorithms

• The parameter p[i] can be:

– The quality of the radio link between the BS and the

user equipment (UE) for DL scheduling, or from the

UE to BS for UL sched

– For Round Robin: The (simulation) time elapsed since

the user i was served last time

• tnow – tlast_time_served_user[i]
(1)

– For WRR: he same parameter like for RR, multiplied
with a weighting factor W[i]>0 (usually ≥ 1)

– For proportional fair: the product between the parameter
from WRR and the quality of the radio link

Scheduling algorithm

• Exercise: we can implement RR by

condidering only the parameter

tlast_time_served_user[i] and allocating the RB to

the user with the smallest value of this

parameter. Is this ok ? Explain why !

Bibliography

• [omnet] OMNeT++ User Manual, Version 4.1.

Andras Varga and OpenSim Ltd, 2010. [Online].

Available: http://www.omnetpp.org/

• [Stuckmann_ICN01] Stuckmann, Peter, and

Frank Müller. "Quality of service management in

GPRS networks." Networking—ICN 2001.

Springer Berlin Heidelberg, 2001. 276-285.

http://www.omnetpp.org/

	Slide 1: Network simulation
	Slide 2: Emulation vs. simulation
	Slide 3: Example of emulator: GPRSim
	Slide 4: Network simulators
	Slide 5: Commercial vs. non-commercial simulators
	Slide 6: Simulators: utilization
	Slide 7: Simulators: utilization
	Slide 8: Random numbers
	Slide 9: Simulation results
	Slide 10: Validating the simulation results
	Slide 11: Validating the simulation results
	Slide 12: Confidence in simulation results
	Slide 13: OMNeT++
	Slide 14: OMNeT++
	Slide 15: General description
	Slide 16: Interfaces
	Slide 17: Modeling concepts
	Slide 18: Hierarchical modules
	Slide 19: Simple and compound modules
	Slide 20: Simple modules in OMNeT++
	Slide 21: Functions
	Slide 22: Functions (cont’d)
	Slide 23: Communication between modules
	Slide 24: Communication between modules
	Slide 25: Communication between modules
	Slide 26: Example of simulation models
	Slide 27: Vertical handover. Introduction
	Slide 28: The VHO process
	Slide 29: The VHO process
	Slide 30: Modelling the VHO process
	Slide 31: Modelling a heterogeneous network
	Slide 32: Modelling a heterogeneous network
	Slide 33: Example: the model of a sub-network
	Slide 34: The model of a sub-network
	Slide 35: The model of a sub-network
	Slide 36: The model of an UMTS cell
	Slide 37: The model of a (E)GPRS cell
	Slide 38
	Slide 39: Parameters of the Resource Allocation problem
	Slide 40
	Slide 41: Transmission control
	Slide 42: Admission control
	Slide 43: The simulation model for TC
	Slide 44: Simulation model for a user
	Slide 45: The model for a user: the buffer
	Slide 46: The simulation model: PCU
	Slide 47: The simulation model: the sink
	Slide 48: The simulation model
	Slide 49: Scheduling algorithms
	Slide 50: Scheduling algorithms
	Slide 51: Scheduling algorithm
	Slide 52: Bibliography

