
Structural modelling.

Configurations

Lecture 5

Outline

• 5.1. Structural modelling

• 5.2. Generics

• 5.3. Configurations

5.1.Structural modelling

• Structural modelling = when an architecture is
modelled as a set of components interconnected
by signals.

• The behaviour of the architecture does not result
explicitly from the structural description

• Basic statement:
– component instantiation statement: - a concurrent

statement

• In the declarative part of the architecture will
appear the component declarations

Component declaration

component_declaration::=

COMPONENT component_name [IS]

[GENERIC(list_of_generics);]

[PORT(list_of_ports);]

END COMPONENT [component_name];

Component declaration

• The component’s name from the component
declaration can be the same or different from the
name of the entity that is associated (bound) to
that component.

• If it is different, then the architecture can be
compiled, but it cannot be simulated
– In order to simulate the architecture, we need a

configuration.

• Ports have name, type and mode (direction)

• Component declarations can appear also in
PACKAGE DECLARATION
– If the package is visible in the architecture, then the

components need not be declared in the architecture

Component instantiation statement

component_instantiation_statement ::=

label: component_name [GENERIC MAP

(generic_association_list)]

[PORT MAP(port_association_list)] ;

Component instantiation

statement
• Component instantiation statement has a

mandatory label:

– The label can be any legal identifier and it is
considered the name of the component
instantiation

• The component name should be the same
like in the component declaration

• The PORT MAP clause makes the
association between the formal ports and
the actual ports.

Ports
• Formal ports are those from the component

declaration

• The actual ports can be:
– Ports of the modelled entity

– Internal signals.

• For a formal input port, the actual can be an
expression (e.g. a value).

• As an actual port can be used the keyword
OPEN, which means that the port is not
connected
– An input port can be OPEN only if it has an initial

value specified at the declaration

– A port that is an unconstrained array cannot be OPEN

– Any other port may be left unconnected (OPEN).

Ports: mode

• IN: the port can be read, but not written
– The IN mode is implicit, i.e., if the mode of a port is

not specified, then it will be considered IN

• OUT: the port can be written, but cannot be read

• INOUT: can be both read and written
– An INOUT port may have more than one driver, when

it must be a resolved signal.

• BUFFER: can be both read and written
– May have a single driver

– A formal port BUFFER can be associated an actual
port of mode buffer or an internal signal.

PORT MAP

• Associations from the PORT MAP clause
can be:

– Positional

– Named.

• In positional association

– Only the name of the actual port is specified

– From its position, it results to which formal
port it is associated

– Order of the actuals must coincide with the
order of ports from the component
declaration.

PORT MAP

• In the named association:

– It is specified name_formal_port => actual_port

– Ports’ order is not imporant

– Each formal port from the named association is visible only in that

component instantiation statement.

• The positional association can generate errors

that are very hard to debug !

• Association rules

– 1. The type of the formal and actual port must coincide

– 2. If the formal port is readable so must be the actual; if

the formal port is writable so must the actual be.

PORT MAP
• The association rules are valid for both types of

association (named and positional).

• An internal signal is considered to be both readable and
writable => it may be associated with a formal of any
mode, if they have the same type.

• Consequences of the rules:
– If an actual port is of mode OUT, it may not be associated to a

formal port of mode IN or INOUT

– If an actual port is of mode IN it may not be associated to a
formal port of mode OUT or INOUT.

– If an actual port is of mode INOUT it may be associatd to a
formal port of mode IN, OUT or INOUT

• Port associations can be made for:
– vectors (e.g. of bits): x(3 DOWNTO 1) => y, where y is

BIT_VECTOR(2 DOWNTO 0)

– Or parts of vectors: a(4 downto 1) => b(5 downto 2);

PORT MAP (updated)

• According to 2002 edition of “1076 IEEE

Standard VHDL Language Reference Manual”:

– For a formal port of mode IN, the actual may be of

mode IN, INOUT or BUFFER

– For a formal port of mode OUT, the actual may be of

mode OUT, INOUT or BUFFER

– For a formal port of mode INOUT, the actual may be

of mode INOUT or BUFFER

– For a formal port of mode BUFFER, the actual may

be of mode OUT, INOUT or BUFFER

Example: the parity generator

V(3)

V(2)

V(1)

V(0)

s1

s2

s3 even
xor1

xor2

xor3

inv1

odd

We discuss again the example with the parity generator modelled structurally, but we

add an output for odd parity, named odd, which will be 1’ when the input vector contains

an odd number of ‘1’s..

The question is: which is the mode of the port odd of the entity parity_circ ?

It may not be IN, or OUT, it may be only INOUT or BUFFER. Here BUFFER is more

appropriate because we want the signal odd to have only one driver.

Fig 5 (after fig 2.3

din [EKP98]). The

modified parity

generator

ENTITY parity_circ IS

PORT(v: IN BIT_VECTOR(3 DOWNTO 0);

even: OUT BIT;

odd: BUFFER BIT);
END parity_circ;

ARCHITECTURE struct OF parity_circ IS

COMPONENT xor_gate IS

GENERIC(del: TIME:=3ns);

PORT(x1,x2: IN BIT;

y: OUT BIT);

END COMPONENT;

COMPONENT inv_gate IS

GENERIC(del: TIME:=4ns);

PORT(x: IN BIT; y: OUT BIT);

END COMPONENT;

SIGNAL s1, s2, s3: BIT;

BEGIN

xor1: xor_gate PORT MAP(y => s1, x2=> v(2), x1=> v(3));-- named association

xor2: xor_gate PORT MAP(v(1), v(0), s2); --positional association

xor3: xor_gate PORT MAP(x1=>s1, x2=>s2, y=>odd);

--ok according to the 2002 standard, but not for older simulators !!

inv1: inv_gate PORT MAP(x=>odd, y=>even);

-- The code accepted by old simulators:

--xor3: xor_gate PORT MAP(x1=>s1, x2=>s2, y=>s3);

--inv1: inv_gate PORT MAP(x=>s3, y=>even);

--odd<=s3;

END ARCHITECTURE struct;

CONFIGURATION cfg_ parity_circ OF parity_circ IS

FOR struct

FOR ALL: xor_gate USE ENTITY WORK.xor2(behave);

END FOR;

FOR inv1: inv_gate USE ENTITY WORK.inverter(behave);

END FOR;

END FOR;

END CONFIGURATION;

ENTITY test IS

END;

–- after [EKP98]

ARCHITECTURE test OF test IS

COMPONENT parity_circ IS

PORT(v: IN BIT_VECTOR(3 DOWNTO 0);

even: BUFFER BIT;

odd: OUT BIT);

END COMPONENT;

SIGNAL vector: BIT_VECTOR(3 DOWNTO 0);

SIGNAL even_p, odd_p: BIT;

BEGIN

et: parity_circ PORT MAP(vector, even_p, odd_p);

vector <= "0000", "0001“ AFTER 20 ns, "0010" after 40 ns,"0011" AFTER 60 ns,

"0100" after 80 ns,"0101" after 100 ns, "0110" after 120 ns, "0111" after 140 ns,

"1000" after 160 ns, "1001" after 180 ns, "1010" after 200 ns, "1011" after 220 ns,

"1100" after 240 ns, "1101" after 260 ns, "1110" after 280 ns, "1111" after 300 ns;

END;

CONFIGURATION cfg_test OF test IS

FOR test

FOR all: parity_circ

USE CONFIGURATION WORK.cfg_parity_circ;

END FOR;

END FOR;

END CONFIGURATION;

5.2.Generics

• Are used for transmitting values to components

• When a generic is declared it is created:
– An object form the class of constants

– of mode IN (may be only read)

– Visible in all architectures of the entity

• Value of a generic can be specified:
– In entity declaration

– In component declaration

– in component instantiation statement

– In configurations

• Each case can overwrite the previous cases

• It is an error if a generic is not initialised

Generics

• In component instantiations:

– Specifying the value with GENERIC MAP

– Can be named or positional

– The actual generic parameter will be a value

• If the name of a generic parameter from the

component declaration differs from the name of

the same generic from the entity declarations,

then we need a configuration in order to

simulate the architecture

– In configuration it will be done the association (the

binding) between the two genrics

Generics

• It means that in configurations GENERIC MAP
can do two things:
– The binding between the generic from component

declaration and that from entity declaration

– The mapping of a value

• In general generics are used for specifying
propagation delays, but they can have other
utilizations:
– To parametrize the number of inputs of a gate or,

more general, of a circuit

– To parametrize the size of a register, a bus, an ALU,
etc.

Example: N inputs gate
ENTITY generic_or_gate IS

GENERIC(del: TIME:=5ns; n: INTEGER:=2);

PORT(x: IN BIT_VECTOR(n-1 DOWNTO 0); y : OUT BIT);

END generic_or_gate;

ARCHITECTURE behave OF generic_or_gate IS

BEGIN

PROCESS(x)

VARIABLE: temp: BIT:=‘0’;

BEGIN

temp:=‘0’;

FOR i IN n-1 DOWNTO 0 LOOP

temp:=temp OR x(i);

EXIT WHEN temp=‘1’;

END LOOP;

y<= temp AFTER del;

END PROCESS;

END ARCHITECTURE;

Register example

ENTITY gen_register IS

GENERIC(n: NATURAL:=8);

PORT(parallel_in: IN BIT_VECTOR(n-1 DOWNTO 0);

parallel_out: OUT BIT_VECTOR(n-1 DOWNTO 0);

reset, clock, command1, command2: IN BIT;

serial_in: IN BIT);

END gen_register;

5.3. Configurations

• Have two utilizations:

– The binding between an entity and one of its
architectures (the example with the parity
generator)

– The binding between a component and the
corresponding entity-architecture pair
• In structural descriptions

• It is the typical utilization

• There exists:

1. Configuration specification

2. Configuration declaration

Configurations

• Configuration specification
– The binding is done in the architecture body

– Used for small projects (the architecture must be
recompiled if there are changes)

• Configuration declaration
– It is a separate design unit

– Advantage: does not need the recompilation of the
architecture if we make changes

• A component instantiation may not be bound
in both configuration specification and
configuration declaration, but only in one of
them.

Configurations

• There are two styles of configurations:

1. With entity-architecture pairs

– It is used USE ENTITY WORK.entity(architecture);

2. The lower level configuration:

– Configurations are used in order to bind components to

entities;

– In the form: USE CONFIGURATION

WORK.configuration_name;

– The difference between the two styles appears if the

architecture of the entity associated to the

component is modelled structurally

Configurations: examples

inv

a b

Suppose that we have an inverter gate named inv, with one input a

and one output b, like in next figure:

Suppose that we have an entity test, without ports, that contains a

component named neg, which will be bond to the entity inv, and two

internal signals, s1 and s2, connected like in next figure:

et

s1 s2

test

Fig 6. Inveter

Fig 7. Entity test that contains the inverter

Configurations: examples

ENTITY inv IS

GENERIC(tp: TIME :=5ns);

PORT(a: IN BIT; b: OUT BIT);

END ENTITY inv;

ARCHITECTURE beh OF inv IS

BEGIN

b <= NOT a AFTER tp;

END ARCHITECTURE beh;

ARCHITECTURE another OF inv IS

BEGIN

…

END another;

CONFIGURATION inv_cfg OF inv IS

FOR beh

END FOR;

END CONFIGURATION inv_cfg;

Configuration specification: example

ENTITY test IS

END test;

ARCHITECTURE netlist_config_spec OF test IS

COMPONENT neg IS

GENERIC (tp: TIME :=3ns);

--GENERIC(tp1: TIME :=3ns);

PORT(x: IN BIT; y : OUT BIT);

END COMPONENT;

SIGNAL s1, s2: BIT;

FOR et:neg -- FOR ALL:neg -- FOR OTHERS:neg

USE ENTITY WORK.inv(beh)

--USE CONFIGURATION WORK.inv_cfg

GENERIC MAP(tp =>7ns)-- GENERIC MAP(tp => tp1)

PORT MAP(a=>x, b=>y);

BEGIN

et: neg GENERIC MAP(10ns) PORT MAP(s1,s2);

END ARCHITECTURE;

Configuration specification

Synthax:

FOR list_of_component_labels:

USE ENTITY entity_name[(architecture_body)]

[GENERIC MAP(generic_association_list)]

[PORT MAP(port_association_list)];

list_of_component_labels: - is the list of the labels of the component

instantiation statements

- it can be in the form: - et1, et2, et3:

- ALL:

- OTHERS:

Different instantiations of the same component may be bound to the different

entities.

VHDL allows the binding of different components to the same entity (if the

number and type of ports allows that) – for debugging, but it is confuzing !

Configuration specification
Instead of USE ENTITY WORK.entity_name(architecture_name) it is possible to put:

USE WORK.ALL; -- before entity declaration or architecture body: this makes visible
all entities. Then we can have:

USE ENTITY inv(beh) GENERIC MAP() PORT MAP();--without WORK

Generics mapping can have two meanings:

1. Previous value of the generic is overwritten

2. The generics from entity declaration are bound to the generics from component
declaration , when their names do not coincide (in example, if at the declaration
COMPONENT neg it were GENERIC (tp1: TIME: = 3ns) then in configuration it
should have been:

GENERIC MAP(tp => tp1)

PORT MAP: makes the association between the ports from entity declarations and
those from component declaration, if their names are different

The formal port is that from entity declaration, while the actual is the port from
component declaration (in PORT MAP we have (formal_port => actual_port))

The drawback of configuration specification is that when there are changes (a
component is associated to another entity or architecture), the entire architecture
should be recompiled. This drawback is removed by configuration declaration.

Configuration declaration: example

ARCHITECTURE netlist_config_decl OF test IS

COMPONENT neg IS

GENERIC (tp: TIME :=3ns);

--GENERIC(tp1: TIME :=3ns);

PORT(x: IN BIT; y : OUT BIT);

END COMPONENT;

SIGNAL s1, s2: BIT;

BEGIN

et: neg GENERIC MAP(10ns) PORT MAP(x=>s1,y=>s2);

END ARCHITECTURE;

USE WORK.ALL;

CONFIGURATION cfg_test OF test IS

FOR netlist_config_decl

FOR et: neg USE ENTITY inv(beh) GENERIC

MAP(tp=>5ns) PORT MAP(a=>x, b=>y);

--FOR ALL: neg USE CONFIGURATION inv_cfg GENERIC

--MAP(tp => tp1) PORT MAP(a=>x, b=>y);

END FOR;

END FOR;

END CONFIGURATION;

Configuration declaration: syntax

CONFIGURATION configuration_name OF entity_name IS

block_configuration

END [CONFIGURATION][configuration_name];

block_configuration::=

FOR block_name

component_configurations

block_configurations

END FOR;

Where block_name can be

- the name of an architecture body (always for the outmost block from

configuration declaration)

- the label of a BLOCK statement (we don’t discuss this case)

- the label of a GENERATE statement (we don’t discuss this case)

Configuration declaration: syntax

component_configuration::=

FOR list_of_component_labels: component_name [binding_indication;]

[block_configuration]

END FOR;

If block_configuration appears in component configuration then it defines the

bindings of the components from the next hierarchical level.

For binding_indication the following forms are possible (this is valid also for

configuration specification):

1. USE ENTITY entity_name[(architecture_name)];

2. USE CONFIGURATION configuration_name;--lower level configuration

3. USE OPEN; -- no entity is associated (bound) to that component !!

• The binding will be done later (e.g. for incremental configurations)

Lower level configuration
Next example shows the difference between lower level configuration and entity –

architecture pairs configurations, in a structural model that contains several

hierarchic levels.

Entity test from previous examples is now a component of another entity, named

big_test, that has no ports, like in the next figure:

et

a b

et1

test

big_test

We present one example of lower level configuration, and one example of entity-

architecture style configuration, for the configuration of the entity big_test.

Fig 8. Entity big_test, which

contains the entity test from fig 7.

Entity big_test with its architecture and a lower level

style configuration:

ENTITY big_test IS

END big_test;

ARCHITECTURE netlist OF big_test IS

COMPONENT test IS

END COMPONENT;

BEGIN

et1: test

END ARHITECTURE netlist;

CONFIGURATION cfg_big_test OF big_test IS

FOR netlist

FOR ALL: test USE CONFIGURATION WORK.cfg_test;

END FOR;

END FOR;

END CONFIGURATION;

Another configuration, in the entity-architecture style:

CONFIGURATION cfg_big_test_2 OF big_test IS

FOR netlist

FOR ALL: test USE ENTITY WORK.test(netlist_config_decl);

-- generic map or/and port map if needed

FOR netlist_config_decl

FOR et: neg USE ENTITY WORK.inv(beh) PORT

MAP(a=>x, b=>y);

END FOR;

--if there were other components then there

--would have been more:

--FOR all: component--

--END FOR

END FOR;

END FOR;

END FOR;

END CONFIGURATION;

Second configuration (cfg_big_test_2) is longer, but it is more flexible because the

internal components (only neg in this example) could be bound more flexibly to

some entity(architecture) pairs.

Default binding rules

• In order to avoid long code sequences, VHDL has rules
for default binding:

• For a component instantiation:
– 1. If there exists and it is visible an entity having the same name

as the component, then the component will be bound to that
entity. If such an entity does not exist, then implicitly it will appear
USE OPEN

– 2. If the entity from rule 1 has more than one architecture, then
the last compiled architecture will be used. It is an error if the
entiy has no architecture compiled.

– 3. For each port or generic from the component instantiation
there must be in the entity a port or generic that corresponds as
name, type and mode. If a generic or port from entity is not
bound, then it is treated as OPEN. It is an error if the port /
generic binding cannot be made.

Direct instantiation

No component is declared in the declarative part of the architecture, and the

binding with the entity(architecture) pair (or with the configuration, for lower level

style) is made directly in the component instantiation statement.

Example:

ARCHITECTURE netlist3 OF test IS

SIGNAL s1,s2: BIT;

BEGIN

et: ENTITY WORK.inv(beh) PORT MAP (a=>s1, b=>s2);

--et: CONFIGURATION WORK.inv_cfg PORT MAP(s1,s2);

END ARCHITECTURE netlist3;

Direct instantiation: syntax

The syntax for direct instantiation statement is:

component_label: ENTITY entity_name[(architecture_name)]

[GENERIC MAP (generic_association_list)]

[PORT MAP (port_association_list)];

Or:

component_label: CONFIGURATION configuration_name

[GENERIC MAP (generic_association_list)]

[PORT MAP (port_association_list)];

Incremental configurations

• In VHDL there exist the so-called incremental
configuration, which means:
– There exists a configuration specification, but it is not

complete (not all ports and generics have been
bound, or there are ports or generics that are OPEN)

– The bounding will be done later, in configuration
declaration

– It is possible even to overwrite some generics values
from configuration declaration.

• In configuration declaration it is not necessary to
have USE ENTITY because the entity appears
in configuration specification.

The board-socket-chip analogy
• Proposed by Alex Stanculescu

• An entity which is modelled structurally can be
compared to a board on which the circuit is
implemented

• The architecture of the entity corresponds to the
stage when sockets are connected on the board
through conductive traces:
– component instantiations = sockets

– PORT MAP = traces

• In this moment the board is not functional yet,
because no circuits have been put in the sockets
– This stage corresponds to VHDL configuration -> the

board will be functional (in VHDL we bind components to
entities).

Conversion functions in configurations
In practice can be situations when the ports of the component and that of the

associated entity have different types. In order to do the associations, conversion

functions are needed.

Example:

ENTITY circuit IS

PORT(q: INOUT std_logic;

clk, reset: IN std_logic;

iesire: OUT std_logic);

END ENTITY;

Entity circuit will be bound to a component (named also circuit) from a structural

model where the type mvl is used instead of std_logic.

Suppose that in a package we have the conversion functions:

- to_mvl ();--converts from std_logic to mvl

- to_std_logic();-- converts from mvl to std_logic

Conversion functions in configurations

PACKAGE conversions IS

FUNCTION to_mvl(x: IN std_logic) RETURN mvl;

FUNCTION to_std_logic(x: IN mvl) RETURN std_logic;

END PACKAGE;

PACKAGE BODY conversions IS

….

END PACKAGE BODY;

USE WORK.conversions.ALL;.—for making visible the types std_logic and mvl

ENTITY x IS

END;

ARCHITECTURE y OF x IS

COMPONENT circuit IS

PORT(ctr: INOUT mvl;

clk, res: IN mvl;

ies: OUT mvl);

END COMPONENT;

Conversion functions in configurations
BEGIN

….

END ARCHITECTURE;

CONFIGURATION cfg_x OF x IS

FOR y

FOR ALL: circuit USE ENTITY WORK circuit(architecture) PORT MAP(

to_mvl(q) => to_std_logic(ctr),

clk => to_std_logic(clk), reset => to_std_logic(res),

to_mvl(iesire)=>ies);

END FOR;END cfg_x;

According to board-socket-chip analogy, the entity is in the “socket” represented by the

component, hence:

- for inputs, conversion is from the type of the component port to the type of the entity port

- for outputs, conversion is from the type of the entity port to the type of the component port

- for INOUT ports, both conversion functions appear, according to the direction of the flow of

information.

COMPONENT circuit

ENTITY circuit
clk

res

clk

reset

q

ctr

iesire ies

Fig 9. Conversion functions in configurations.

Conversion functions

• Are can be used whenever there is a

binding beteeen generics, ports or

parameters in:

– Function calls

– Procedure calls

– Port map

– Generic map

