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său excep̧tional, de persevereņta sa în modestie şi răbdare. Domnul Profesor Crȩtu
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Abstract

The size of the output originating from large scale, numerical simulations poses
major bottlenecks in high performance, parallel computing. Recently it became
more and more evident that a radical change has to take place in the way scientists
and engineers handle numerical simulations. The beating up of more computational
horse power out of supercomputers, is a trend that simply hits the data wall long
before it gets a chance to start the ExaFLOP race. Supercomputing today is like riding
a barouche with horses that travel orders of magnitude faster than the storage; long
distance runs, add hills, and valleys, to the landscape; high performance computing
facilities, have become high-tech aquaria, where one can build the most advanced,
and expensive submarines, and then be limited to only staring at them through the
windows.

This thesis proposes a new concept for dealing with large-scale, numerical
simulation data. The new concept is called ‘space-time window reconstruction’, and
introduces a new style in high performance computing.

A space-time window is an independent numerical simulation, based on a large
scale version, capturing a subdomain of analysis, in both time and space.

The concept is implemented using two diUerent solutions: the Vrst is focused
on providing maximum Wexibility to the user, while still retaining the Wow features
from the global simulation; the second concentrates in reconstructing the very same
Woating point bits. Which one is used depends on the user. Both provide substantial
data reduction, and alleviate the supercomputing data bottlenecks. However, they
are more powerful when used together, in a compact, stand-alone procedure.

A regular computational Wuid dynamics, numerical simulation, is always shifted
in time, and sometimes even in space. It is common practice to analyse a domain
larger than what is really of interest, just to get the experimental data to match
against a smaller region in the space-time domain. It is thus natural to propose a
style of analysis that tries to extract and decouple the interesting simulation parts,
from the large scale version, which is normally tightened to expensive, and scarce
hardware installations. The obtained results lay down the foundations for a new
way of doing numerical analysis, which can be extended to many other scientiVc
Velds, like, for instance, electrotechnics and magnetohydrodynamics. The overall
data reduction varies from 2× to 6% or better, but the proposed methods can only
be applied with certain restrictions in place.

In the closure, the thesis outlines a number of research directions which could
be approached in the future, and retains a Vrm position that the new paradigm has
to be polished by joining forces with colleagues from applied mathematics and with
experts in computational Wuid dynamics (CFD). A list with claims and personal
contributions is also explained.

Keywords: data reduction, space-time window, numerical simulation, CFD
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‘A good soldier is a poor

scout’.

Cheyenne 1
Introduction

This chapter introduces the reader to one of the main challenges for computational
science and engineering (CSE). The motivation for this thesis is driven by the need
to have robust methods that can deal with very large numerical simulation data.
This is needed both for storage and transportation. High performance numerical
simulation bottlenecks are given by diUerent states of the digital information. Data
originates from computation, proceeds throughout the communication networks
and Vnally takes physical form in storage devices. In reality, the process is much
more interleaved. The problem is that computational power has increased much
faster than the ability to handle the output. Therefore, supercomputing today is like
riding a barouche with horses that travel orders of magnitude faster than the storage.
Long distance runs add hills and valleys to the landscape. New ways of thinking
must emerge in order to tackle with the problems already at hand. It is not very
practical to produce a once in a lifetime, most polished numerical simulation, if then
one is dead in the water with it. In this respect, supercomputer facilities of our days
are like high-tech aquaria where one can build the most advanced and expensive
submarines, and then be limited to only staring at them through the windows. The
whole picture is thoroughly explained in the following section; afterwards, the
closure outlines the structure of the thesis.

1.1 Motivation

This section outlines the main motivations behind the thesis research. TheVrst
generation of computers are capable of cycling around 50-70 operations per second.
Half a century ago, a computer conceived and built in Timişoara has been used for
designing the hydroelectric dam at Vidraru, on the Argeş river [11].

Present day computers perform 1015 times faster [12], and it is projected that
the exa-FLOPS barrier will be breached between 2020-2025. However, our ability
to store and transport information of this magnitude to consumer hardware, for
scientists and engineers to interpret, is lagging behind [13].
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Many attempts for dealing with these problems are still made. The people from
the applied mathematics Veld have been developing ways for reducing numerical
simulation data to the minimum size. The majority of these methods have been
implemented in structural analysis domains, and are known, in a more generic
manner, as part of the global-local analysis framework[14, 15].

On the other hand, the people from computer science Velds are also developing
methods of their very own. Floating point compression algorithms, for example,
based on prediction [7] and heuristic methods [16], wavelet solutions [17], peer to
peer data transport [6], and massive data infrastructures like in [18], are to name
just a few. The number of attack angles for dealing with large numerical simulation
data is vast. Numerous approaches from the literature are thoroughly examined in
the following chapters.

It is only natural that the end-users, who endorse in large scale numerical
analysis, like CFD scientists, are handling the problems in their own way. The
easiest and most frequent workaround is to subsample the results until something
that can be downloaded and post-processed at hand can be obtained. Skipping some
of the time steps really seems to conform to this Ockham’s razor approach, however,
it may create problems for space-time visualisation and post-processing.

In situ post-processing, on the other hand, is a more demanding method, and
enables the user to process all the data remotely. A very good survey in this respect
is given in [19]. Feature tracking and extraction allow the scientist to focus and
only deal with essential phenomenological information [20].

DiUerent schools, diUerent approaches, and only one problem to tackle with: a
robust, feasible way, for dealing with large numerical simulation results. Unlike
the state of the art solutions, which are shown to only scratch the surface of the
real problem, this thesis introduces a new concept, called ‘space-time window
reconstruction’. The idea brings a paradigm shift in numerical simulations, with
beneVts for the scientiVc community, and direct contributions in CFD. The next
section introduces the main objectives for the research.

1.2 Thesis objectives

This section explains the objectives that had been established for the thesis.
Beginning with the 1960s, the people in aerospace engineering have been developing
and using private tricks of the trade to carry on with numerical analysis, on poor
hardware. The limitations in computer memory and performance determined the
users to invent workarounds. Sometimes these workarounds bear diUerent names for
the same methods, depending on geographical location and the company involved.
Most of the knowledge remained black art, surfacing later in diUerent numerical
analysis Velds.
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The target of this thesis is to Vnd robust ways to minimise the size of the data

produced by large scale, parallel numerical simulations. Such simulations are most
likely modelling unsteady phenomena (using real time as a component). Since
numerical analysis has plenty of applications, this thesis is focused on CFD.

With CFD in mind, one needs to understand why techniques like submodelling
[15] or substructuring [14] are not borrowed by the community, after half a century
of existing practice. There must be a reason for which transient implementations are
scarce, and the common applications of these methods involve only static analysis.
To answer these questions, a new concept is proposed.

During the 5th German-RomanianWorkshop on Turbomachinery Hydrodynamics
(GROWTH), held in July 2009 in Timişoara, the seeds for what it later became known
as the ‘space-time window reconstruction concept’ have sparkled. This concept is
based on the fact that often enough, a CFD user has to produce simulations for very
large analysis domains, while only a small portion of the results, in both time and
space, are of interest. The main objective of this thesis is to produce the ‘space-time

window reconstruction’ concept, and use it as a means for bottleneck alleviation in
large scale, parallel HPC numerical simulations.

Numerical analysis and domain decomposition are mathematical subVelds with
a very broad spectrum of interdisciplinarity. Numerous scientiVc and engineering
schools are involved, but with very little coupling along the communities. Anyone
who has ever dared to peek inside numerical analysis software, commercial or not,
recognises the esoteric programming style – owed to the lack of communication
between software engineers, on one hand, and mathematicians who understand
applied mathematics, on the other. The goal is to integrate what’s best available in
all of the relevant scientiVc branches, and Vnd a ‘data minimising’ solution for CFD
applications.

Modern numerical analysis, including CFD, can not exist without computers. In
fact, history shows that most of the machines and devices designed for computing
had some sort of scientiVc or mathematical motivation in the background [21,
22]. Either for solving partial diUerential equation (PDE) systems [23], projectile
trajectories [24] or cipher breaking [25], computers had quickly become the third
pillar in science – alongside theoretical and experimental research.

Since this is a computer science thesis, the focus is on data size reduction, with
beneVts in storage and transportation. The next section outlines the organisation of
the document.

1.3 Thesis outline

This section describes the structure of the thesis; the rest of this document is
organised as follows:
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Chapter 2 describes the background in the Veld of, and the strategy applied for,
understanding High Performance Computing (HPC). There are several publications
covering this chapter. The unconventional approaches to the literature fortunately
pay oU, and a new perspective for looking at computational science and engineering
(CSE) is introduced, from the computational standpoint.

Chapter 3 contains a thorough survey of the state of the art in dealing with large
numerical simulation data. DiUerent, independent schools of thought are drilled for
information, with a synthesis of the most relevant solutions from computer science,
applied mathematics and computational Wuid dynamics. The conclusion is centred
around the observation that none of the methods from the state of the art have
enough interdisciplinarity to grasp the problem at its own roots. Therefore, they
only scratch the surface of it and fail to provide an eUective solution.

Chapter 4 proposes the ‘space-time window reconstruction’ concept, provided
with two solutions for implementation. The two remedies for the problems in the
state of the art can be used either independently of one another, or with combined
force for maximum eXciency. The Vrst one is based on submodelling, and provides
maximum Wexibility, and the second one is a reVned validation of solution A, where
the interpolation is completely removed, and the internal Velds inside the space-time
window can be reconstructed with bit-level accuracy. It is based on the interception
of parallel interprocessor traXc.

Chapter 5 introduces the strategy applied for trying to tackle with the aforemen-
tioned problems, and therefore validating the new concept, by dealing with test
cases of gradually increasing complexity. The strategy is designed with fail-back
plans, because each of the test cases emerge from complete uncertainty as foun-
dations for the next level. Plan B corresponds to solution B, and it is fortunately
studied at the end, after all the other stages have proven to be successful.

The Vrst test case, in Chapter 6, is a proof of concept for submodelling in CFD.
It is a trivial simulation using the Vnite element method (FEM), but like any Vrst
step in uncharted territories, its Vrst purpose is to encourage the research in the
planned direction, and to provide basic information about the problems that need to
be considered for the more complex targets.

The next one, in Chapter 7, is meant to verify if the procedure holds for rotation-
ary Wows. Also, it is designed as a transition from theVnite element method (FEM)
to the Vnite volume method (FVM), and as a switch from the old PETSc toolkit[26]
to the OpenFOAM[27].

Chapter 8 shows a full 3D unsteady demonstration of submodelling, basically
introducing the concept of complete space-time window reconstruction in CFD.
This method is aimed for users who desire to obtain Wexibility, while still reducing
the size of the data, and preserving the Wow features.

Chapter 9 presents a diUerent solution for space-time window reconstruction,
based on the interception of parallel interprocessor traXc. The method is designed
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for users who want to trade Wexibility for perfectly accurate reconstructions.
The concluding chapter synthesizes the contributions, thoroughly draws the Vnal

remarks, and outlines the future research directions. As a fundamental conclusion,
a compact procedure for resolving the numerical data deluge problem is presented,
based on the two solutions proposed in Chapter 4. This enables the user to bring the
most important parts of the large scale simulation on to commodity hardware, like
laptops and memory cards, and perform local post-processing with unprecedented
Wexibility and freedom.

The thesis now continues with the chapter on High Performance Computing
(HPC).
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2
High performance computing

2.1 Research strategy for understanding high

performance computing

Before continuing with the thesis, it is important to underline the background
in High Performance Computing. This section presents the strategy used by the
author to understand HPC, and the original viewpoint obtained during the Vrst year
of study.

During the diploma thesis, key problems for store-and-forward communication
systems had been addressed, with a very speciVc application for mail transfer agents.
The contributions had been strictly computer science oriented, with improvements
for operating system services. The Vrst contact with CFD has taken place during
the master’s program [21]. The Vnal year of the master’s program was spent
trying to get the grasp of what HPC is, and how it relates to the problems that
need to be addressed by CFD – in particular – and numerical analysis, in general.
Meanwhile, the origins of computational devices have been studied, and the key
historic architectures have been organised into a fresh perspective. The author
concluded that scientiVc computing and numerical analysis were the main driving
forces for the development of modern supercomputers.

In order to cut throughout the marketing fog that surrounds the supercomputer
business, data mining techniques have been applied, on a collection of about 6000
related scientiVc articles [28]. Both partitioning around medoids [29] – Fig. 2.2 –
and single linkage hierarchical clustering [30] – Fig. 2.1 – have been used, with
comparable results.

Most of the papers have been selected from conference proceedings and journals
published by the Association for Computing Machinery (ACM) and the Institute
of Electrical and Electronics Engineers – Computer Society (IEEE-CS). Based on
silhouette graphs, it was concluded that the relationships between the studied
publications were reasonable, but artiVcial [31]. However, since the study has been
based on regular term frequencies rather than more appropriate inverse term metrics,
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Figure 2.1: Hierarchical Clustering

the relationships between the periodicals merely reWect the writing style of the
articles, not the content.
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Figure 2.2: Partitioning Around Medoids

In deVance of that, the data acquisition process provided the blueprints for
grasping computing in science and engineering (CiSE), and for developing an
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PERFORMANCE COMPUTING

original model of the subject, detailed in [32] – see Fig. 2.3.
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Figure 2.3: Computing in Science and Engineering

Armed with the new knowledge, it has been easier to investigate the literature
for speciVc issues. Computer science is governed by two main international societies,
the ACM and the IEEE-CS. These two institutions are powerful enough to prescribe
the computing curricula around the world, and help shape the trends and the future
of the Veld.

The ACM for instance, publishes well-targeted surveys on computer science.
In Sameh et al. [33] the author speciVcally prospects the emergence of CSE, and
lays down the foundation for anyone trying to understand the conWuence between
computers and modern science. More general purpose periodicals, like the ‘Com-
puter’ magazine and the ‘Transactions on Computers’, published by the IEEE-CS,
along with the ‘Communications of the ACM’, can also provide starting points for
investigations; the IEEE ‘Spectrum’ magazine has a computer section, with useful
information.
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On the other hand, the literature that deals with CSE from a computational
perspective is very rare. In 1999 the IEEE-CS started to print the Vrst CSE magazine,
which has been targeting computer science audiences ever since [34]. The ‘Interna-
tional Journal of High Performance Computing Applications’, published by SAGE
Ltd., and the ‘Journal of Supercomputing’, published by Springer Science+Business
Media, also keep an open computational perspective. The ACM ‘Transactions on
Mathematical Software’ and the ‘Transactions on Modelling and Computer Simula-
tion’ have more speciVc targets, merely numerical algorithms, and non-numerical
simulations, respectively.

Tveito and Winther [35] introduce the reader to the methods that are used when
solving partial diUerential equations with computers. Together with the easy to
follow implementations of Nikishkov [36], the two books provide computer scientists
with common CSE foundations. Several other materials can provide background
state of the art information, like Tucker [37], Bader [38] and Benjamin [39].

Modern numerical analysis is considered to begin with the 1947 paper, by John
von Neumann and Herman Goldstine, ‘Numerical Inverting of Matrices of High
Order’ [40]. The well known bible of scientiVc computing is Press et al. [41], a
masterpiece in applied mathematics; also, a recent revision of Bird et al. [42] explains
the fundamental equations on transport phenomena.

Numerical analysis has driven the development of modern computers, together
with the opportunity, and necessity, to solve larger and more complex mathematical
problems, in science and engineering. The following section presents a short
synthesis on the evolution of modern supercomputing, up to the present and the
future.

2.2 Evolution of supercomputing

This section outlines the evolution of supercomputers since the beginning of
computational hardware, up to the present, and continuing with prospects for the
future.

The very Vrst computers were designed to solve mathematical and scientiVc
problems. The Z1 model of Konrad Zuse, from 1938, was the world’s Vrst freely
programmable, Turing-complete computer [43], using Boolean logic and binary
Woating point numbers [44]. The AtanasoU-Berry from 1939 was speciVcally de-
signed to solve linear systems of equations; it was not programmable [23]. Many
others followed, paving the road for modern CSE.

The earliest machines used a clock cycle of 1 Hz, limited by the number of
rotations per minute (RPM) of various components. Modern computers use diUerent
metrics for understanding performance. In terms of numerical and scientiVc comput-
ing, the number of Woating point operations per second (FLOPS) is the most relevant.
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Starting with a series of papers from 1983 to 1992, Jack Dongarra introduced the
idea of benchmarking computers with the use of linear equation solvers [45–49].
The Vrst LINPACK report dates back to 1979 [50].

The problem with FLOPS is that they fail to capture the real performance of the
machine. They can reWect the peak level, when the system is benchmarked with
specially crafted tests, the theoretical level only achieved by pencil and paper, and
the real, averaged level, when the machine is running genuine scientiVc applications,
from the default workload.

The real performance is always lower than both the peak and the theoretical
levels, and highly depends on the nature of the application which is in use. Dongarra
proposed a more complex set of benchmarks for supercomputers, which also stresses
the bandwidth bottlenecks from the internal system, and thus provide more realistic
values for the metrics [51].

The people from the Distributed European Infrastructure for Supercomputing
Applications (DEISA) and the Partnership for Advanced Computing in Europe
(PRACE) projects make use of more relevant metrics for benchmarking their systems.
Two separate benchmark suites containing diUerent software applications, covering
the broad spectrum of computational sciences, are carefully maintained. For CFD,
FENFLOSS is used – a code that has been developed for more than 20 years
at the ‘Institut für Strömungsmechanik und Hydraulische Strömungsmaschinen’,
University of Stuttgart [52].

The roadmap to European petascale computing is depicted in Fig. 2.4. The
HPCEUR project that started in 2004 morphed into the HPC European Taskforce
(HET), bringing scientists together for the creation of a scientiVc case.

The PRACE initiative is aimed to link Tier-0 country-level European super-
computing sites. The Memorandum of Understanding (MoU) was signed on the
16th of April 2007 by 16 member states in Berlin. The DEISA projects are lower
level, Tier-1 and Tier-2 connections between regional and local HPC centres, with
dedicated European backbones, to allow for local sites to beneVt from cutting-edge,
supercomputing facilities.
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Figure 2.4: The European Road to Petascale Computing

The combined PRACE/DEISA ecosystem is designed to provide the EU with a
living HPC organism, having highways and neural centres, in consistency with the
European target to become the number one engine in scientiVc innovation. A global
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Vlesystem is already accessible via grid middleware through the GEANT backbone.
Expensive FP6 and FP7 projects had already been consumed.

The two projects have naturally merged, with 20 EU and associated countries,
and cutting-edge supercomputing centres, marching together for European Petascale
access. The GEANT-supplied private backbone is continuously extended to connect
as many academic sites as possible. The PRACE project is now in the second
implementation phase (2IP), until the middle of 2012.
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Figure 2.5: World-Wide Supercomputer Applications

Fig. 2.5 shows the most prominent applications of supercomputers throughout
the world. Research and Vnance are leading domains. Many of the participants in
the list do not specify their applications; however Fig. 2.6 considers a more detailed
presentation.

Besides research and Vnance, logistic services, geophysics, defence and informa-
tion processing share the largest number of HPC sites. In spite of the lower ranks
associated with the rest of the domains, the last position in the list is already a
TFLOP/s machine.

There are many other engineering and scientiVc Velds that beneVt from high per-
formance computing. Almost every aspect of scientiVc research has been improved
with the help of computers – from historical and social humanistic studies, to particle
physics, protein folding, and computational chemistry. Whenever the speciVcity of
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Figure 2.6: Supercomputer Applications

the problem allows for loosely-coupled systems to be used, quasi-supercomputing
systems can be constructed by volunteer computing projects. As of March 2011,
the cumulated power of the BOINC network [53] is that of two Tianhe-1A systems
which rank 1 in the Top500 list. Some of the projects also exploit GPU accelerators
to speed-up the ‘number crunching’.
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Figure 2.7: Continental Supercomputer Systems

13



CHAPTER 2. HIGH PERFORMANCE COMPUTING

KFlop/s

MFlop/s

GFlop/s

TFlop/s

PFlop/s

 1930  1940  1950  1960  1970  1980  1990  2000  2010

Peak Supercomputer Performance over Time

Z
1

E
D

S
A

C
U

N
IV

A
C

IB
M

70
90

C
D

C
66

00

C
D

C
76

00
IB

M
36

0-
19

5

C
ra

y/
1

C
ra

y/
X

M
P

C
ra

y/
2

T
M

C
/C

M
2

T
M

C
/C

M
5

C
ra

y/
T

3D

A
S

C
I-

R
ed

R
R

   
   

 

Figure 2.8: Historical Peak Performance – based on Dongarra et al. [2]

In terms of the number of supercomputing sites, Europe shares one quarter of
the world-wide systems – Fig. 2.7. The American continent clearly dominates the
market. With China beginning to produce its own microprocessors, and the Tianhe
system knocking oU the Vrst rank, the Asian continent is promising to catch-up.
The same goes for the volunteering desktop computing projects; according to the
BOINC statistics, the US is followed by Germany, UK, Canada and Japan.

Again, it is important to remember that statistics have always been used for
marketing purposes. The number of FLOPS a system can perform have become
more or less irrelevant with time. During the age of third-generation computers
the software is of much more importance, and it is critical to identify the system
which will perform better when running very speciVc software implementations.
Nonetheless, the LINPACK Benchmark is widely used to solve a dense system of
linear equations on the world’s supercomputers, and produce the Top500 list [12].
The portable implementation uses 64-bit Woating point operations and can be scaled
to various system architectures.

Fig. 2.8 shows the evolution of performance using historical supercomputers,
considered to be the top of the edge achievements during their time. It is based on
the work of Dongarra et al. [2].

The Y-axis is logarithmic. From Z1 to the RoadRunner (RR), the evolution
appears to be predictable. According to Fig. 2.8, the ExaFLOP – 1018 – barrier will
be broken around 2022 or in any case between 2020 and 2025.

Feitelson even proposed a formula for estimating the future performance of
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Top500 computers [54]. It is listed in equation (2.1).

Rmax(r, t) = Rmax(r0, t0)(
r0

r
)0.72

(t−t0)
1.15

✞

✝

☎

✆2.1

In (2.1) r is the rank in the list and t the year, and r0, t0 are the current indexes;
Rmax is the maximal achieved performance expressed in GFLOPS, and can be taken
from the list. According to the prediction formula, the ExaFLOP barrier will be
taken down in 2020, and in 2022 the rank 1 position will triple the speed. The
estimation has been based on the Tianhe-1A leadership.

Fig. 2.9 shows the performance growth of the supercomputers using the TOP500.
It is based on Strohmaier and Meuer [3] where the authors correctly extrapolated
that the PetaFLOP limit will be breached at the end of 2008, six years before it
happened.

GFlop/s

TFlop/s

PFlop/s

EFlop/s

 1994  1996  1998  2000  2002  2004  2006  2008  2010  2012

TOP500 Computational Power

Rank 1
Rank 500

Total

Figure 2.9: Top500 Performance Growth – based on Strohmaier and Meuer [3]

The lowest rank clearly shows a uniform, exponential distribution appearing
as a straight line on the semi-log axes, but the Vrst position in the list is jumpy.
The total cumulated power of the 500 ranks is suggesting that the world-wide
supercomputer performance is indeed experiencing an exponential development.
This is in agreement with Fig. 2.8, where Z1 and RoadRunner (RR) are on the same
track.

Fig. 2.10 plots the internal power distribution for the Top500 starting with the
Vrst release. On log-log axis, the straight lines appear to have a ZipVan distribution
[55]. The plot is based on [4], where the author pleads for such a distribution.
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Figure 2.10: ZipVan Power Law of Top500 Supercomputers – based on Ripeanu [4]

The slope of the lines is almost imperceptibly shallower than −1, suggesting
a very slight tendency towards diversity rather than redundancy; but overall an
excellent balance. The fact that the slope remains relatively constant throughout
time shows that the balance between diversity and redundancy is kept at optimal
levels, with very few ‘events’ for the head of the list.

However in Feitelson [5] it has been argued that the model is deteriorating. The
top of the list is a little bit too slow, and the bottom ranks grow up in performance
faster than they should. According the Zipf law, the product between rank and
frequency should be constant. Fig. 2.11 – Feitelson [5] – shows the Rmax axis
multiplied with the rank. Any data set in agreement with the Zipf law should
produce straight lines with a slope of 0, on semi-log axis.

Starting with 1998 the slopes are badly diverging from what they should be.
The model is slowly deteriorating, suggesting that improvements are necessary.
The smaller ranks show that they are more biased against the power law; a Zipf-
Mandelbrot law could be more appropriate.

Statistical studies are necessary in order to understand the future development
of the supercomputing industry. Even if the Top500 is not exhaustive nor complete,
it clearly stands-out for the world-wide high performance computing power. Under-
standing the correct phenomena that takes place within the supercomputer industry,
is a key to projecting its future impact on the scientiVc community.

Strohmaier and Meuer, for instance, introduced 4 classes of computer archi-
tectures in order to apply Bell’s law of computer class formation to the Top500;
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Figure 2.11: Distribution Inside the List – based on Feitelson [5]

they used the taxonomy in Table 2.1 [9]. The law described in 1972 states that
every decade, technological advances enable a new, usually lower priced computing
platform to form. Once formed, each class is maintained as a quite independent
industry structure [56].

Data parallel systems
Vector Cray Y-MP,X1,

1970-1990
NEC SX; SIMD CM-2

Custom scalar systems
MPP T3E,XT3,IBM SP

1980-2000
Scalar SMP/Constel.

Commodity clusters PC cluster, Blades 1990-2010

Power-eXcient systems
BG/L or BG/P

2000-2020
low-power systems

Table 2.1: Bell’s Law applied to Supercomputing – Meuer [9]

Bell also identiVed three directions of development for computers [56]:

• Constant price and increasing performance of an established class

• Supercomputers: a race to build the ‘largest’ computer of the day

• Novel, lower priced ‘minimal’ computers
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The Green500 list began in 2006 as an extension to the Top500, and redeVned
system performance according to the amount of FLOPS per Watt [57]. An earlier
trend, of ‘supercomputing in small spaces’, sprang another branch of evolution [58].
It is expectable to see that BlueGene-like technology incorporates both of these
trends, and that massively parallel processor (MPP) systems of this kind are going
to emerge and dominate the market that is now ruled by beowulf clusters.

With the MPP market becoming more and more accessible, the technology shift
in computer architecture should become steeper. The data from the Top500 list
appears to be in agreement.
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Figure 2.12: Supercomputer Architectures in TOP500

Fig. 2.12 displays the evolution of the main supercomputer architectures as
reported to the Top500 database.

The symmetric multi-processor (SMP) rolled out before the millennium event,
leaving space for clusters and constellations. Clusters are, for now, the dominant
architecture with more than 80% shares. However, in 2010 they started to give up
to MPP, which began to display a subtle growth in popularity. This is in fact in
agreement with Table 2.1, which states that a new class of power-eXcient systems
must be emerging.

Microprocessors reign over the Top500. Fig. 2.13 shows the decline of the vector
architecture. In agreement with Amdahl’s law, microprocessors have become much
easier to produce and replace. There is an upper limit in the maximum number of
processing elements (PEs) that can be incorporated in a system, and that may give
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Figure 2.13: Decline of the Vector Processor in TOP500

chances for modest recurrences of the vector machines and cluster-like constellations
– an in-depth study is presented in Feitelson [54].

High performance computing is not only mature enough, but indispensable for
supplying the modern scientists and engineers with tools, that open doors which
have never been opened before. The closure condenses the principal lines of sight
from this chapter, and concludes the subject.

2.3 Closure

In the closure, the background in High Performance Computing is synthesized
with computer science in mind, through the new, emerging Veld of computing in
science and engineering.

High Performance Computing is a young, evolving, interdisciplinary domain, but
is here to stay. It involves many other self-sustaining Velds of research, intertwined
at the conWuence between computer science and applied mathematics. All of the
scientiVc and engineering Velds have started to rely on supercomputing for venturing
into new frontiers: Wuid dynamics, magnetohydrodynamics, electromagnetism,
particle physics, chemistry, astrophysics, electrostatics, mechanics, with no less
importance for HPC applications in art, architecture, and the social and life sciences.

From a computational standpoint, computational science and engineering (also
known as CiSE) is the name of the game. The new Veld of CSE, for the Vrst time,
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is bringing computer scientists together with researchers of diUerent expertise, in
order to cope with the grand challenges that arise when new frontiers have to be
explored.

Armed with a correct understanding of the Veld, the following chapter inves-
tigates the available state of the art methods for dealing with large numerical
simulation data.
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3
State of the art in dealing with large

numerical simulation data

3.1 Methods from computer science

There are many attempts to deal with the problem of large numerical simula-
tion data. This section is an extensive study which outlines the most important
approaches originating from the computer science Veld.

The U.K. Research Councils deVne e-science as ‘large-scale science carried out
through distributed global collaborations enabled by networks, requiring access

to very large data collections, very large-scale computing resources, and high-

performance visualization’. One may be tempted to further elaborate; science
journalist George Johnson concludes his apologia: ‘as research on so many fronts

is becoming increasingly dependent on computation, all science, it seems, is
becoming computer science’ [59].

Europe is well aware of the importance of having a well-structured HPC in-
frastructure, and the urgent need to exchange experiences and know-how across
the Union [60]. On the other hand, deep scientiVc computing requires large, deep
data [61]. Therefore, the scientiVc world is entering a new paradigm, that of data-
intensive science [62]. As noted by Gray et al. [62], analysing this data requires
methods that can deal with huge datasets, and can Vnd very subtle eUects overlooked
in the previous measurements. The authors believe that most science happens when
data is examined in new ways.

In Gerndt et al. [63], the authors develop a virtual reality (VR) computer aided
surgery (CAS) system that resolves the airWow inside the patient’s nasal cavities, in
order to support the medical stuU during rhinosurgery. The anatomy is extracted
from computer tomography (CT). Besides being time-consuming, the simulation
faces serious problems to deal with the data in real time. The authors are investigat-
ing cache and prefetch operations for more advanced simulation runs. Similar CAS
examples show how critical it is, for numerical simulation data, to become available
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within real time constraints, when the context demands it.
Gray et al. [62] argue of why scientists avoid databases. The author of this thesis

believes that the explanations are subjective. The truth is that database software,
in general, lacks the functionality and features that can make it attractive, and
fast enough for science. The critique is extended by Burns et al. [64], who declare
scientiVc databases to be an ‘orphan in the database community’.

One important feature that is not yet fully developed, for example, is the ability
to handle time-varying data at high resolutions.

Based on experience and the developments in literature, the author of this
thesis believes that an ideal database system for CSE has to meet these very basic
constraints:

1. Provide high performance, distributed, parallel query processing;

2. Have an object-relational oriented structure;

3. Allow for very large number of levels for compressed metadata;

4. Provide large, multi-indexing capabilities;

5. Default to intelligent, compressed multi-scale, multi-resolution storage;

6. Provide smart, time-travelling, multi-resolution query processing;

Many of these features are already implemented in unconnected projects. Both
HDF [65] and netCDF [66] provide many of these requirements and are used by the
scientiVc community; they are the most popular (and portable) Vle formats in CSE,
and already present the abilities of simple database systems. The parallel version
of netCDF provides high performance implementations [67]; many other projects
follow the same blueprints.

We may one day realise that such a database system could evolve into something
that is closer to artiVcial intelligence (AI) and cyber-scientist assistants, for all the
complexity and processing power involved. In any case, time-travelling query
processing at arbitrary resolution levels is key for developing mature, dedicated
databases in CSE. Until then, proprietary and custom Vle formats are going to
prevail, maintaining the diversity of unconnected neurons that share the same
bazaar.

Databases are made of Vles, and Vles are organised into Vlesystems. The
literature bursts with multi-indexing, multi-scale metadata approaches for handling
scientiVc data storage, which sit on top of database systems. These in turn can
beneVt from parallel Vlesystems [68].

Korsemeyer and Thompson [69] see the Web and the Grid, as part of the Internet
infrastructure, the de facto medium for sharing raw scientiVc data. However, the
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dedicated middleware, such as a specialised database system, is acknowledged to be
missing.

The natural approach to access high performance resources is centralistic. This
poses several problems. Strategic locations for data warehouses that can be counted
on Vngers are easy to spot, and vulnerable targets. In Europe, they are supposed
to be 5, with several backup regions. Destroying the information from only one of
such places may prove to be more horriVc on the long-term than the direct bombing
of hospitals. Many other scenarios can render the data inaccessible, and suspend the
research activities on large scale levels.

It is essential that smart techniques are developed in order to:

1. Retain easily portable, minimal information from the huge datasets;

2. Allow for quick reconstruction of the key original data features;

3. Cheaply empower independent researches to continue the scientiVc investiga-
tions;

Hiraki et al. [18] propose a ‘data reservoir’ approach, which uses multi-gigabit
backbone networks to connect research facilities together. The implementation is
based on the iSCSI protocol [70].

The people from numerical weather prediction (NWP) face serious challenges
when dealing with simulation data. The solution usually involves some sort of
Grid transport [71]. On the other hand, when the forecast has expired and can
be adjusted with experimental measurements, the numerical simulation becomes
obsolete.

The Global Telecommunication System (GTS) is a point-to-point and point-to-
multipoint network that interconnects meteorological telecommunication centres.
The most popular data format is the GRIdded Binary (GRIB), with various versions
and improvements [72].

Skidmore et al. [73] propose a virtual notebook environment, implemented on
top of web services, aimed for providing scientists with support for collaboration,
and easy management of computational experiments. It is an electronic version
of the paper-based lab notebook. Experiments can be launched using a visual
speciVcation language. The prototype is tested with neuropsychological data.

An intelligent data service system has been developed at the Sandia National
Laboratories for internal use [74]. The key principle identiVed in the paper is that
very large data sets should be processed in situ, and not moved around. Based on
this idea, smaller data objects representing key features are extracted and tracked
inside the facility, in order to provide scientists with an easy way to transport, and
interpret, information. After all, the Vnal integrator of visual representations is the
human brain.
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Monti et al. [75] use peer-2-peer technologies to oYoad simulation data from
HPC centres. By using an overlay of mediator nodes, they are able to reduce the
transfer time by almost an order of magnitude. Furthermore, Vazhkudai et al. [6] –
see Fig.3.1 – introduce the FreeLoader, a distributed local area network (LAN) storage
system, to cope with data deluge from experiments, simulations, and apparatus.

Figure 3.1: FreeLoader Storage for ScientiVc Data – based on Vazhkudai et al. [6]

The Vnal stage in the data analysis workWow usually requires intensive post-
processing and visualisation operations at local user computers, most likely local
desktop workstations and personal notebooks. End-user hardware has an increasing
computational performance, but is ill-equipped when it comes to I/O bandwidth
rates. On the contrary, a large portion of the local hard disk storage is free. Based
on these observations, the FreeLoader project exploits data locality by intelligent
caching and prefetching of data inside the LAN. The storage is donated by the local
users – called benefactors, just like in regular peer-2-peer distributed systems.

End-user hard drives have lower I/O rates than common local area networks.
This enables the clients to use parallel get() and put() operations from diUerent
benefactor machines. The data is organised into stripes (chunks) and fragmented
into smaller morsels.

The FreeLoader borrows desktop storage scavenging, from peer-2-peer systems,

24



3.1. METHODS FROM COMPUTER SCIENCE

parallel I/O and data stripping from parallelVlesystems, and caching from coopera-
tive caching systems Vazhkudai et al. [6]. Hot data always replaces seldom accessed
information, and when the requested bits are not available inside the LAN, they get
downloaded from remote locations, repositories, and archival sites. This makes the
FreeLoader approach well suited for implementation at institute and facility level.
One can easily envision grids of FreeLoader systems connected together, when
additional security features are in place.

Huge data sets are only useful if they can be visualised. Visualisation maps
large quantities of data into graphical representations, such that they exploit the
superior visual processing capability of the human brain, which translates the visible
spectrum into experiences that can be analysed inside the internal, associative neural
network. That is, visualisation enables the human brain to quickly draw inferences
and detect patterns. Developing powerful visualisation tools plays a key role in CSE
[76].

Unat et al. [77] present adaptive subsampling (coarsening) techniques, for the
compression of scientiVc data. Just like wavelet compression, which is reviewed in
the next section, adaptive coarsening is a multi-resolution technique. Compression
ratios of at most 8:1 are achieved for turbulent Wow numerical simulations. These
can be adjusted to be in agreement with the necessary accuracy. The method
however has not been compared with adaptive mesh re Vnement techniques – like
those described by Jasak [78]. The main goal of adaptive coarsening is to achieve
compression, and for adaptive mesh reVnement the goal is to optimise the solution
grid; however, in both cases, the essential features of the simulation are retained,
according to speciVed accuracy constraints.

Techniques from high performance visual data analysis and scientiVc data
management are combined in [79], and applied for accelerator science. In [80],
the authors present multi-resolution bitmap indexes as a method to improve the
performance of scientiVc databases. Data from earth and rocket science is used, with
parallel implementations.

Remote visualisation of a numerically simulated turbulent jet is described in
[81]. The authors propose the usage of ‘visually lossless’ (lossy) video compression
to transport images over wide area networks in real time. The data is rendered
using a local cluster, but partial rendering is suggested for user clients with graphic
capabilities.

Computer engineering has been developing smart look-ahead techniques for a
long time, in order to alleviate performance bottlenecks. Memory caches are good
examples for exploiting data locality [82]. Texture compression has also been used
in computer graphics for a while. With embedded systems becoming more and more
ubiquitous, several code-size reduction techniques have started to take shape [ 83];
Vnally, bus level compression boosts the data rate for intensive applications [84].

Out of this primordial soup comes the idea ofWoating point compression, using
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predictors, context dictionaries, value diUerencing – for time locality – and, when
geometric information is available, spatial locality.

Floating points, especially double precision, are widespread in scientiVc use.
Bassiouni [85] explores the challenges and beneVts that arise when compressing
scientiVc and statistical databasess (SSDBs). DiUerencing and run length encoding
(RLE) are the most frequent techniques.

Ghido [86] introduces an algorithm for lossless compression of IEEE Woating
point audio. He claims that the method, based on integer linearisation, is also
applicable on diUerent types of data sets; however, the algorithm is designed for
32-bit audio and needs to be extended for double precision data.

The work of Xie and Qin [87] is also single precision, but is aimed for compress-
ing seismic data. The method uses a diUerential predictor with adaptive contexts.
Engelson et al. [88] on the other hand, use a predictive coder which is based on
high-order polynomial extrapolation, and they tests it with ordinary diUerential
equation (ODE) data.

When geometric data, like mesh information, is available, spatial coordinates
can also be compressed and smarter locality algorithms be devised. Such is the
work of Lindstrom and Isenburg [89], where the authors use a Lorenz predictor to
produce high throughput compression rates. Without the mesh information, the
compression ratio of other algorithms may depend on how the structure is transited
by the encoder.

Starting with 2006, Woating point compression for numerical simulation data
has started to mature. Ratanaworabhan et al. [90] use a diUerential Vnite context
method. The original method was introduced in hardware design to increase the
Instruction Level Parallelism (ILP) of microprocessors [91]. The compressor works
for raw streams of double precision Woating point (FP) numbers, without requiring
any geometric data. Later on, in [92], they introduce FPC, a compressor for linear
streams of 64-bit Woating point data. The method is Vnally polished and disseminated
via [7]. FPC achieves compression ratios varying between 98% and 6.64%, the later
being obtained for numerical plasma simulation data. Also, in terms of speed, it
outperforms state of the art competitors on the given data set, and its simplicity
allows it to be implemented in very high throughput hardware devices.

Fig.3.2 is based on Burtscher and Ratanaworabhan [7], and describes the FPC
algorithm. The authors use both fcm [93] and dfcm [91] for predicting data inside
the Woating point stream. The predicted value that is closer to the original is going to
be XOR-ed against it, so that as many bits as possible are set to zero. The number of
leading zero bits is encoded as a 3-bit value. An additional bit is added to distinguish
between the predictors that were used. The resulting nibble together with the
‘residual’ non-zero values are sent to the compressed bit stream in data blocks, using
interleaved positions to obtain byte-level eXciency.

The FPC algorithm is very easy to implement on both hardware and software,
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Figure 3.2: FPC: The Floating Point Compression Algorithm – based on Burtscher
and Ratanaworabhan [7]

is fast, and can be used on any sort of double precisionWoating point data, without
prior knowledge of the content type or any metadata information. This makes it
suitable for implementation in numerical simulation storage formats and makes
it a preferred choice for combining it with diUerent technologies (including the
FreeLoader).

On the other hand, turbulent data is harder to predict, in space, and the common
octree data structures [94], that are used to hold mesh Veld information, are stored
using geometric numbering schemes – therefore, compression ratios for unprepared
streams of spatial vector and scalar Velds, holding turbulence data, are going to be
suboptimal.

The parallel version of FPC, pFPC, is designed for speed, and is able to trade oU
compression ratio for throughput [95]. Compression is usually more eXcient when

the number of parallel threads reWect the data dimensionality. For vector Velds, data
dimensionality is 3 – best compression factors are obtained when data is interleaved
on 3 channels. It is critical to pre-process the data before compression and transform
everything into a properly shiftedWoating point stream. How to obtain the optimal
permutation, especially when the simulated phenomena are unsteady, is a matter
yet to be investigated, and it is not the scope of this thesis.

The self-tuning FPC, gFPC, uses genetic algorithms to adapt its hash function,
and it is four times slower than the original, but achieves slightly better compression
rates [16].

Sano et al. [96] use Veld-programmable gate array (FPGA) hardware to im-
plement another compressor, this time using a 1D cubic predictor which is more

27



CHAPTER 3. STATE OF THE ART IN DEALING WITH LARGE

NUMERICAL SIMULATION DATA

eXcient than the 2D Lorenz method. Tomari et al. [97] use software for the com-
pression, and application-speciVc integrated circuits (ASICs) for decompression. The
mantissa is not compressed. Exponents of 11 bits, are packed together with the
sign in 12-bit words, which, in turn, are grouped into 4-word vectors. Considering
64 vectors at a time, data is transmitted in three possible scenarios related to the
context dictionary: near match, perfect match and uncompressed. When the block
of vectors looks similar with previously seen data, they can be compressed by an
index and a small diUerence if necessary. Mantissa remains untouched, and can be
encoded with usual encoding schemes.

As a continuation of pFPC, GFC is designed by O’Neil and Burtscher [98] for
massively parallel Graphics Processing Unit (GPU) computing. Since GPU devices
are usually integer oriented, the authors interpret the Woating point data as a stream
of integers, in order to gain speed.

The school of computer science has been producing valuable solutions based on
Woating point compression and peer to peer systems. The remaining of this chapter
presents related works from applied mathematics, and draws the Vnal remarks on
how the new concept which the author proposes connects with the state of the art
in diUerent scientiVc domains.

3.2 Methods from applied mathematics

The previous section has explored the methods for dealing with large numerical
simulation data from the computer science perspective. However, since computa-
tional science and engineering is a borderline Veld of study with strong mathematical
foundations, it sounds reasonable to also review the available approaches originating
in applied mathematics.

The discovery of discrete wavelet transforms (DWTs) have revolutionised
Velds like digital signal processing (DSP), and image compression. The FBI uses
Daubechies wavelets to compress grayscale Vngerprint data up to 5%–8%. [99]. But
wavelets have also started to be used in CFD, for modelling turbulence [100].

Kim et al. [101] propose a method for dealing with ultra large scale direct numer-
ical simulations (DNSs); the procedure also facilitates fast domain decomposition
and easy implementation of compression.

Lossy, multiresolution CFD compression, using wavelets, has slowly started to
spread. Kang et al. [102] propose a hybrid method using super-compact wavelets.
They achieve compression ratios between 14.5:1–34.8:1 with acceptable losses in ac-
curacy. They also propose that such methods should be used for remote visualisation
of large scale numerical data.

In order to display the idea behind wavelet compression, the Haar wavelets
are used, based on the explanation from [103] and the work in [104]. Consider the
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continuous function in (3.1).

f : [0, 1] 7→ R

✞

✝

☎

✆3.1

The goal is to approximate f with piecewise constant functions. The natural
way would be to split [0, 1] into a number of intervals, and to approximate f(x) on
each of these intervals with the average value of f on that interval. For simplicity,
consider the interval [0, 1] to be split into N = 2k intervals of equal length.

These intervals are all of length 2−k, so the average value of function f on the
nth interval is given by afn

in (3.2); k is called the discretisation scale.

afn
= 2k

∫ (n+1)2−k

n2−k

f(x)dx
✞

✝

☎

✆3.2

Now that the data has been discretised into afn
values, let An be described by

(3.3) as a set of discrete entries that require compression.

An = {afn
| n = 0, 1, ..2k − 1}

✞

✝

☎

✆3.3

DeVne the directed distances dj as in (3.4), with j = {0, 1, .., 2k−1},

dj =
af2j

− af2j−1

2

✞

✝

☎

✆3.4

and the sum sj as in (3.5).

sj =
af2j

+ af2j−1

2

✞

✝

☎

✆3.5

The process is reversible since af2j
= sj + dj , and af2j−1

= sj − dj . This is
just a one level transformation. The full wavelet transform must be performed in a
recursive manner, such that the sj values from stepm must become the An values
of stepm+ 1.

If s(l)
j and d(l)

j denote the appropriate values at level l, then s(0)
j = An, and the

values for the higher levels are recursively given by (3.6) and (3.7).

s
(l)
j =

s
(l−1)
2j + s

(l−1)
2j−1

2

✞

✝

☎

✆3.6

d
(l)
j =

s
(l−1)
2j − s

(l−1)
2j−1

2

✞

✝

☎

✆3.7

The inverse transform is also given by (3.8) and (3.9).

s
(l)
2j = s

(l+1)
j + d

(l+1)
j

✞

✝

☎

✆3.8
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s
(l)
2j−1 = s

(l+1)
j − d

(l+1)
j

✞

✝

☎

✆3.9

Compression is achieved by only storing the diUerences d(l)
j at each level, the

number of which is halved during each iteration. The topmost level is L = log2N =

k, having a single distance coeXcient d(L)
0 and a summation coeXcient s(L)

0 that
also has to be stored. L is called the level of recursion and may be diUerent from k.
The discretisation scale is only important at a diUerent stage, and is not necessary
when the data is already in a numerical form.

It is easy to notice that wavelets allow for multiscale levels of detail to be
decomposed from a discretised signal. That means that if not all of the levels of
details are necessary, one can simply achieve lossy compression by limiting the
recursion level L. The nice eUect is that wavelet decomposition will tend to preserve
the cumulative energy from a given dataset, and thus allow for an implicit version
of feature extraction.

Another eUect is that the diUerence data can be encoded on a lower number of
bits. DiUerent encoding schemes can be deployed, and very small coeXcients can
be neglected. Other wavelets are more eXcient at compressing data, and it is still a
matter of investigation to chose the right model for a given data set.

Trott et al. [105] for instance use wavelet compression on 32-bit FP numbers and
state that only 3% of the data is necessary in order to produce a decent visualisation.
While the brain integrates the visual information, the rest of the data can be
downloaded in the background, to obtain the original uncompressed version.

CFD simulations often present vorticity and shocks which are very hard to
capture in progressive decompositions. However, wavelet based methods have the
ability to capture the time-frequency relationship with ease, and are suitable for
such discontinuities in the data stream. Standard HuUman coding is used for the
compression of the wavelet coeXcients.

Wilson [106] claims that ‘lossy compression is the only choice for turbulence
data’. Later in [107] his Vndings conclude that data from turbulence simulation does
not usefully compress with lossless methods. Considering 8 bits per pixel to be the
common practice data rate for visualisation, he proposes a 4:1 compression ratio.
However, not all scientiVc visualisations can be reduced to the necessary bit rate.

Giles [104] presents a report for wavelet compression of unsteady CFD data.
He compares the advantages over Fourier compression and arguments that ‘the
local nature of wavelets means that a discontinuity in the data only aUects the
amplitudes’. He also considers CDF 3,1 wavelets for better performance than the
popular Haar ones.

Amaratunga [108] applies wavelet compression to reduce the in-core kernel
matrix storage for large-scale simulations of 3D integral problems.

Numerical data deluge is not only a problem during post-processing operations.
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Several matrix storage formats have been proposed to deal with this issue [109].
Liu [110] proposes a compact row-oriented storage scheme for Cholesky factors.
Andersen et al. [111] implement a Cholesky solution of symmetric positive-deVnite
systems of equations, using packed storage.

Sommeijer and der Houwen [112] use techniques for low-memory programming
in order to develop a numerical algorithm for the solution of parabolic equations.
Shampine [113] uses similar techniques for Runge-Kutta codes.

Structural analysis is the computational science that deals with the analysis and
simulations of numerical stress forces within mechanical structures. Most of the
phenomena can be described by linear equation models, unlike complex, industrial
CFD, and they have immediate, practical applications in engineering.

The roots go back in the 1960s, in aero-space engineering, when it was easier
to analyse the stress forces that appear in aircraft structures during diUerent Wight
regimes, rather than compute very basic streamlines around the fuselage.

At that time, computer memory was very limited, and scientists were forced to
develop ingenious workarounds to get the job done. One of the common practice
was static system condensation, also known as substructuring [14].

Static system reduction (condensation) aims to split a system of equations like
in (3.10) into subparts that can be dealt with independently.

Ax = b
✞

✝

☎

✆3.10

Substructuring methods are based on a more generic mathematical concept,
called ‘partial matrix inversion’ or ‘partial elimination’. The goal of substructuring
is to condense the system of equations to lower numbers of unknowns. This can be
done in many ways, but for the sake of simplicity the explanations from [114] are
used as follows.

In (3.10) the matrix of the system is A ∈ R
n×n, and x ∈ R

n, b ∈ R
n are vectors

with x holding the unknown variables.
The system can be split into blocks like in (3.11).

(

A11 A12

A13 A14

) (

x(1)

x(2)

)

=

(

b(1)

b(2)

)

✞

✝

☎

✆3.11

If A11 is regular, then x(1) can be expressed in terms of (3.12).

x(1) = A−1
11 (b(1) − A12b

(2))
✞

✝

☎

✆3.12

Now substitute (3.12) in (3.11) to get (3.13), which only contains half of the
unknown vector.

(A22 − A21A
−1
11 A12)x(2) = b(2) − A21A

−1
11 b

(1)
✞

✝

☎

✆3.13
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Substructuring and superelements are also useful for commercial or strategic
reasons, when diUerent engineering teams have to complete the analysis of diUerent
natural subparts independently.

The whole idea behind iterative numerical methods is to avoid inverting the ma-
trix in (3.10), and produce an approximate solution through repeated matrix-vector
multiplications. This makes substructuring unfeasible for large scale CFD simula-
tions since it is based on the inversion of matrix subparts. Smarter techniques, like
partial Gauss elimination [41] or complex approaches for large sparse system matri-
ces are known. However, the complexity of CFD phenomena requires a solution for
very large algebraic systems, and that makes similar attempts unfeasible. This is,
in the author’s opinion, the main reason why partial elimination techniques have
not been developed in CFD. The nonlinearity of the turbulentWows translates into
many degrees of freedom which need to be taken into account. Also, substructuring
in the middle of a Wuid Wow, in order to capture interesting features, makes the
boundaries completely dependant on the global simulation. The procedure, besides
being extremely expensive, would have to be repeated during each time step. In
structural engineering, the subparts are carefully chosen in order to minimise the
boundary contacts, and that’s when following the natural components becomes
standard practice: wings, tails, and cockpits.

Figure 3.3: Submodelling

Another method, sometimes called ‘global-local’ analysis, is submodelling [15].
Global-local analysis is performed in stages – see Fig.3.3. First, a coarse simulation
of the global model is performed. Out of it, boundaries are cut and a submodel
is extracted with a higher resolution level. In order to transfer the data from the
coarser mesh to the Vner mesh, interpolation is used. The submodel is then analysed
independently from the global model. As a side eUect, data for the cut-boundary
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conditions is orders of magnitude smaller than the global simulation Velds.
However the procedure is very restrictive. Submodelling can only be applied

when the local phenomena is uncoupled with the global simulation. In structural
analysis, for example, this is known as the Saint Venant’s principle, and it also
works for electrostatics. The principle states that ‘the strains that can be produced

in a body by the application, to a small part of its surface, of a system of forces

statically equivalent to zero force and zero couple, are of negligible magnitude at

distances which are large compared with the linear dimensions of the part’ [115].
In more colloquial words, if a sheet of paper with a circular hole in the middle, is
exposed to marginal constant forces which tend to elongate its length, the stress
induced far away from the hole is negligible, as opposed to the stress concentrated
around the hole which will produce cracks in the material. Impurities can take the
role of holes or cracks, so this principle plays a key role in material stress analysis.

But what is more important now in relation with storage requirements, is
that submodelling can not be applied when this principle does not hold. Not
only does this principle not hold in CFD, but submodelling nonlinear equations
in the middle of a turbulent Wow has never been attempted. One of the methods
presented in this thesis is based on submodelling. Mass and Wux conservation
have to be taken into account, and one has to develop methods for reconnecting
the equations together again after the submodel is extracted. During unsteady
simulations, errors are introduced at each time iteration, so the procedures have
to be repeated. The complexity of the proposed method goes way beyond classic
submodelling techniques.

This section produced a synthesis of what applied mathematics has to oUer for
dealing with large numerical simulation data. The conclusion will recapitulate the
limitations in the state of the art and will state the problem that is being challenged
by the thesis.

3.3 Conclusion

This chapter has introduced a thorough survey of the state of the art methods for
dealing with large, numerical simulation data. The Vnal section closes the chapter by
recapitulating the limitations from the current solutions, and by stating the problem
that needs to be solved in the next chapters.

Large sizes of data have always posed serious problems to the computer science
community. This still holds true when large sizes of data used to mean a few
kilobytes. The ability to distil information may be of more importance than the
ability of simply producing or acquiring it. Truth cannot be derived from facts,
it proceeds from meaning. Just like Tycho Brahe used to develop false planetary
models based on the very thorough observations that he made, it took Kepler another

33



CHAPTER 3. STATE OF THE ART IN DEALING WITH LARGE

NUMERICAL SIMULATION DATA

decade of hard work, using the very same information, to discover the laws that
later enabled Newton, to comprehend the laws of universal gravitation.

Several techniques have been developed that are clearly driven by the unmedi-
ated desire to comprehend the large datasets at hand, either produced by simulations,
or acquired by sensors. All these approaches relay on the fact that the human brain
is the Vnal and ultimate computer, capable of integrating and processing every-
thing. And for now the best way to interface the brain with the data is through
visualisation, by bombarding it with controlled Wuxes of photons.

Duque and Legensky [116] use in-situ post-processing and visualisation for
large-scale unsteady CFD data. Driven by the desire to understand the results, they
consider that often enough it is only necessary to extract isosurfaces and transport
them to the client side for further post-processing. Also, they make use of intelligent
GPU texture mapping so that unnecessary bus traXc is avoided.

Yu et al. [117] propose in-situ visualisation as a scalable way for dealing with
very large, highly intermittent and unsteady, turbulent combustion phenomena.
Ignition and extinction are given as examples.

Kwan-Liu et al. [19] propose smart in-situ visualisation techniques as the so-
lution for ultra large numerical simulations. They also deploy feature extraction
techniques to reduce the data to the minimal information that the brain needs to
process in order to integrate the new knowledge. A survey of feature extraction
techniques and challenges is presented by Frits et al. [20].

No matter how smart, feature extraction techniques are still in early stages of
development and unless they are tightly coupled with intelligent SSDBs, as deVned
in the previous sections, they will fail to reach full potential.

For instance, the author believes it is critical to allow the CSE user to experience
with a little bit more than very basic post-processing at client side, and also to
permit further investigations and reVnements; AI may or may not be ready soon
enough to provide such complex features. Also, no constraints should be imposed
on client connectivity, and the key features – the raw intelligence – of the results,
should be portable and easily reproducible with commodity hardware.

Data deluge in large, parallel numerical simulations is still one of the main
problems of modern High Performance Computing. DiUerent approaches, from
diUerent schools of thought have been attempting to alleviate the data-related
bottlenecks in supercomputing, but without any decisive success. The main data
bottlenecks in supercomputing can be summarised in three levels:

1. Client level, between the client and a trusted checkpoint

2. Gateway level, between the trusted checkpoint and the supercomputing
gateway
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3. HPC facility level, between the supercomputer gateway and the internal
nodes

The current state of the art approaches only scratch the surface of the problem,
without being able to dig deep into the roots of the issue, and eventually provide
well targeted solutions. For this reason, the next chapter introduces a new concept,
called ‘space-time window reconstruction’ , by proposing two implementations for
the problems in the state of the art.
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The methods from the state of the art in dealing with large numerical simulation
results, only scratch the surface of the data deluge problem. This chapter proposes a
new concept, called ‘space-time window reconstruction’, which addresses the roots
of the problem.

A space-time window is an independent numerical simulation, based on a
large scale version, capturing a subdomain of analysis, in both time and space. The
following sections summarise the problems in the state of the art, and then introduce
two possible solutions for the implementation of the space-time window concept.
The main purpose is to alleviate the supercomputing bottlenecks and the data deluge
problem.

4.1 Problem Statement

This section expands a synthesis on the limitations of the state of the art methods
for dealing with large numerical simulation data.

The typical structure for a HPC centre is presented in [75]. Fig.4.1 depicts such
an organisation with an emphasis on the main bottleneck problem that is the subject
of this thesis.

During the previous chapters, in order to emphasise the limitations in the state
of the art, the author compared modern HPC facilities with complex, and very
expensive aquaria. One can build the most advanced U-boats inside these aquaria,
and then Vnally realise that there is no way to move them out. The same is true for
large numerical simulations that require time and expensive technology to produce.

Fig.4.1 shows that in a typical supercomputing centre some nodes are dedicated
to computing, depicted as processing elements (PEs), while others are assigned to
storage handling. All traXc into and out from the facility has to pass through the
gateway level. This already creates a huge bottleneck for uploading and download-
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Figure 4.1: Bottleneck Problems: Typical Organisation for a HPC Facility

ing data into and from the supercomputing centre. At the gateway level, users are
identiVed, authenticated, assigned with certain security clearances and logged for
audit.

The Internet connection can vary from very good, with limited bandwidth,
to very poor, with data losses and packet duplications, and show Wuctuations in
response times. This fact usually poses the most serious constraint on the user
who is trying to remotely access the data within the supercomputing centre. The
gateway’s Internet connection is usually very good, but has limited bandwidth and
hardware resources – so the number of simultaneous clients is limited. The third
bottleneck happens when the gateway tries to access the data from the storage zones
or from the computing nodes.

All that being said, three levels of data transportation bottlenecks are crippling
the user’s ability to handle the output from large numerical simulations. The thesis
addresses the bottlenecks by trying to reduce the global simulation to one or more
windows with minimal data, in simulation space and time.

Two solutions for implementing the space-time window reconstruction concept
are proposed in the following sections; the interprocessor traXc originating from
parallel matrix operations, can either be approximated through geometric interpola-
tion (Solution A), or it can be completely intercepted and archived as in (Solution B).
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Parallel matrix operations are the foundation stone for large numerical applications,
and before continuing, the basics must be revised.

4.2 Parallel Matrix Operations

Before continuing with the proposed methods, some background information
about parallel numerics needs to be established. The general aspects of scientiVc
computing are well described by Tveito and Winther [35], with an approach focused
on computational audiences. This parallel matrix-vector refreshment is based on
the thorough explanations from Quinn [8].

(a) Original airfoil (b) Mesh around the airfoil

Figure 4.2: Discretisation of the Analysis Domain

Given the domain of analysis in Fig.4.2, the original airfoil (a) is described with
computer aided design (CAD) methods. In order to study the Wow around the airfoil
the domain is discretised by creating the mesh in (b). The equations governing the
Wow are going to be solved at points located at the vertices of the mesh or, for the
Vnite volume method, at the centre of each elemental shape forming the mesh (in
this case, parallelograms).

The connections from the graph in Fig.4.2 (b) are used to assemble the algebraic
system of equations in the form of (4.1), where A is the system matrix and b is a
vector conVgured with the help of known boundary conditions. These procedures
are well described by Resiga et al. [109], and with computational audiences in mind
by Nikishkov [36].

Ax = b
✞

✝

☎

✆4.1

The system in (4.1) is solved with iterative, numerical algorithms, like the
conjugate gradient [41]. One of the frequently encountered operations in such
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algorithms is the multiplication between a matrix and a vector, as shown in Fig.4.3,

where ∀i ∈ [0,m− 1], ci =
n

∑

j=0

ai,jbj [109].









a0,0 a0,1 ... a0,n−1

a1,0 a1,1 ... a1,n−1

. . . .

am−1,0 am−1,1 ... am−1,n−1









×









b0
b1
.

bn−1









=
[

c0 c1 ... cm−1

]

Figure 4.3: Serial Matrix-Vector Multiplication

There are three natural ways to split the matrix data from Fig.4.3, and speed-up
the computations by the parallel processing: row-based decomposition, column-
based decomposition, and block-based decomposition – Fig.4.4.

(a) Row-based (b) Column-based (c) Block-based

Figure 4.4: Parallel Matrix Decompositions

The vectors themselves can be split and spread across the processing nodes, or
more easily they can be replicated if there is enough memory for the job. To simplify
things, both vectors are considered to share the same approach of distribution
among the processors. The total number of possible combinations is reduced by
only considering three cases: row-based matrix decomposition with replicated
vectors, column-based matrix decomposition with distributed vectors, and block-
based matrix decomposition with distributed vectors. The three cases are brieWy
presented in the following paragraphs.

4.2.1 Row-based decomposition

In Fig.4.5, the vectors b and c are replicated inside each of the parallel processing
tasks. Therefore, each processor has its own copy (one task is assigned per processing
unit).
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
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Figure 4.5: Row-based Matrix-Vector Multiplication

In order to complete the multiplication, each processor exchanges the partial
results with the processing world. This is done via the all-gather collective interpro-
cessor communication, like in Fig.4.6.

Figure 4.6: All-Gather TraXc Exchange – based on Quinn [8]

The boundary conditions (BC) that are received during the all-gather commu-
nication are given by RBCi

= (c0, .., ci−1, ci+1, .., cm−1), where i is the processor
number. RBCi

is a set of discrete values geometrically located at various border
positions in the subdomain that is designated to be resolved by processor i. The
values correspond to diUerent scalar and vector Velds that are taken into account by
the simulation model (i.e. pressure and velocity).

In Euclidean space, the inner product becomes a dot product. A maximum of m
p

rows are given to each processor for computation.

4.2.2 Column-based decomposition

In the column-based case from Fig.4.7, the b vector is distributed across the
processors.

Each processor computes a partial product between the column of A that it holds
and its own portion of b, obtaining a column of partial products as in Fig.4.8.

The partial product columns need to be summed up in order to produce the
Vnal result of c. This is done via the reduction procedure so that the computational
diXculty for addition is divided among the processing units.
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Figure 4.7: Column-based Matrix-Vector Multiplication

Figure 4.8: All-to-All and Reduction Interprocessor TraXc – based on Quinn [8]

The all-to-all exchange collective operation transports the partial c
′

from one
processor to another, before the columns can be summed up. That is, two collective
operations are used for interprocessor transfers, with the Vrst one constructing the
necessary boundary conditions (BC) for the partial multiplication, and the second
one constructing the BC for local summation.

4.2.3 Block-based decomposition

In the block-based decomposition, Fig.4.9, each processor has a local submatrix
with a portion of the b vector.

After each processing element computes the local A× b product, the partial c
results are summed up by reduction to produce the Vnal vector.

In Fig.4.10, a scatter collective operation may be required to distribute vector b
among the tasks, but is not shown.

The reduction operation can be implemented with gather calls, that require
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Figure 4.9: Block-based Matrix-Vector Multiplication

Figure 4.10: Block-based Interprocessor TraXc – based on Quinn [8]

interprocessor transfers of boundary conditions (BC). This approach is more
scalable than the previous decompositions. It has a reduced interprocessor traXc
between the subdomains, and that makes it the preferred choice for large simulations,
scaling well on an increased number of processors [118].

4.2.4 Closure

Parallel matrix operations are frequent when doing high performance numerical
simulations. The route that a message takes to reach its destination not only depends
on the decomposition method, but also on the topology of the interprocessor net-
works, which are conVgured at start-up, and may actually mimic the real hardware
connections.

Fig.4.11 shows one of the 4 subdomains partitioned from the mesh in Fig.4.2(b),
together with its boundary conditions at geometric locations. The border of this
subdomain consists of two regions, one where the boundary conditions (BC) are
given by the user from the initial problem setup, and one where the boundary
conditions originate from the neighbour processors via the interprocessor traXc
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Figure 4.11: Subdomain Boundary Conditions (BC)

exchange.
If the original domain in Fig.4.2(b) isD, and the subdomain in Fig.4.11 is S ⊂ D,

then the border of the subdomain S is given by Γ = ∂S = BC +RIPC , where BC
are the boundary conditions supplied by the user and RIPC is the interprocessor
traXc received from the neighbours. If the subdomain is chosen inside the analysis
domain without any direct connection to the external universe (BC = 0), the
complete boundary conditions set is supplied by the interprocessor traXc RIPC .

In this thesis the author presents a new concept, called ‘space-time window

reconstruction’. This new concept is demonstrated using two implementations,
one which uses geometric interpolation to approximate the Γ boundary conditions
for a user-selected subdomain, and one which intercepts and stores RIPC in or-
der to reconstruct the Velds inside a manually deVned subdomain, with the very
same Woating point numbers. The concept is designed to reduce the magnitude
required by the simulation output, and thus to relieve the data bottlenecks. The two
implementation solutions are presented in the following sections.

4.3 Solution A: Space-time window reconstruc-

tion based on submodelling

The Vrst solution is engineered to provide maximum Wexibility for the user,
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but instead it trades-oU the accuracy levels of the reconstructed Velds. The new
simulation can be shifted in both time and space, so it may be necessary to revalidate
the physical phenomena inside the space-time window.

Let the domain of analysis be D – Fig.4.12 – of arbitrary type. By decomposing
a generic 3D domain into a set of polyhedral cells ΩD, the discretised form, also
called a mesh, is obtained. A mesh can be deVned in many ways, using point lattice
or graph theory concepts. For the sake of the presentation, the Ω notation is used to
denote a set of geometric locations. The physical phenomena is modelled using Vnite
Velds ej , where j denotes the index of the Veld in the problem space. Examples of
Velds are pressure and velocity, with known values corresponding to the locations
in Ω space.

Figure 4.12: Solution A: Space-Time Window Extraction

The user deVnes a box-like subdomain S contained inside D (S ⊂ D), with the
boundary described by ∂S = B. Considering the discretised form of the equations,
∂ΩS = Γ. Γ is a set of discrete points deVned by equation (4.2), with Γi being
a subset i and describing discrete surfaces in 3D (n = 6), or line segments in 2D
(n = 4).

Γ = ∪n
i=1Γi

✞

✝

☎

✆4.2

A new, extraction mesh Ωex, is generated to cover the subdomain S. This may
or may not coincide with ΩS . For the initial time tidx = 0 the Velds ej in the original
mesh ΩD are transferred to the new Ωex mesh using geometric interpolation, like in
Fig.4.13 and (4.3).
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ΩD 7→
ej

tidx=0 Ωex = e
′

j

✞

✝

☎

✆4.3

Figure 4.13: Mesh Veld transfer via linear interpolation

The interpolated e
′

j boundary Velds from the Ωex mesh are packed and stored
into a dedicated space-time format. This procedure is repeated for each time step as
shown in Fig.4.12, for tidx = 0..n.

The complete space-time information has the property of being smaller than the
global simulation, and can be easily downloaded at the user side.

Fig.4.14 shows how this space-time information is used to reconstruct the Velds
inside the window. A new, independent simulation is started using end-user
hardware. A reconstruction mesh,Ωrc, is generated inside the subdomain S which
is now a standalone analysis domain, S = D

′

. The e
′

j initial Velds for tidx = 0 are
transferred from Ωex to Ωrc again, using interpolation (4.4).

Ωex 7→
e
′

j

tidx=0 Ωrc = e
′′

j

✞

✝

☎

✆4.4

For each known time index from the space-time archive (called a capsule in
Fig.4.14), the boundary conditions are prescribed around the window by interpolat-
ing the e

′

j boundary Velds from the Γ
′

locations, to the new Γ
′′

= ∂D
′

as a subset
of Ωrc.

There is no other way for the 3D subdomain to be aware of what happens
outside its universe. For greater eXciency, the prescribed boundary values can
be also interpolated for unknown time indexes, if the time resolution inside the
capsule does not match the one in the original simulation. The reconstruction of
the internal Velds, e

′′

j , is performed using the same solver that was deployed in the
global simulation run.

The overall algorithm stages are presented in Fig.4.15. An extraction mesh is
overlaid onto the global simulation in order to generate the geometric locations for
Veld extraction.

The Velds from the global simulation are then interpolated at the extraction
locations, in order to be able later to form complete initial conditions and boundary
prescriptions, in a space-time capsule archive. A new mesh is created for the
reconstruction process, and the Veld values from the space-time capsule are used to
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BASED ON SUBMODELLING

Figure 4.14: Solution A: Space-Time Window Reconstruction

approximate the initial conditions and the boundary evolutions of the space-time
window. The missing internal Velds are then recalculated using the same numerical
solver.

The space-time window is, in fact, a transient submodelling window. However,
since it involves unsteady turbulent phenomena at the boundaries, the procedure
is very diXcult to implement and much more complex than what is understood by
submodelling, in the literature [15]. One may obtain the same Wow features, but
never the very same Velds. If the very same Velds are required, the next section
provides a proper solution.

Figure 4.15: Main Stages for the Space Time Window Method
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ART LIMITATIONS

4.4 Solution B: Space-time window reconstruc-

tion based on interprocessor traffic

The previous solution allows for the reconstruction of the Wow features, but not
for the very same Woating point numbers. In order to obtain the very sameWoating
point numbers, Solution B proposes that the interprocessor traXc is intercepted and
archived – Fig.4.16 describes this scenario.

Figure 4.16: Solution B: Interception and Storage of Interprocessor TraXc

In order to obtain a space-time window, manual domain decomposition is used
to split the global analysis domain D into two subdomains, S1 and S2. The amount
of parallel interprocessor traXc generated by the two processors associated with the
subdomains strictly depends on the convergence of the solution.

On the other hand, the smaller the ∆T time step, the higher the number of
iterations and traXc volume. With this method, skipping time steps is not possible
at all. To overcome the very strict limitations, one needs to make sure that S2 has a
much Vner mesh than S1.

A polyhedral cell consists of points, edges and faces. If Ω2 is the mesh of S2,
and Ω1 the mesh of S1, then the common boundary between S1 and S2 is deVned
by ∂Ω2, and consists of polygonal faces. Let the boundary cells of S2 and B2, be all
the polyhedra in Ω2 which contain boundary connection faces with Ω1. Then, the
internal cells of Ω2 are deVned by I2 = Ω2 −B2.

This method is applicable when I2 can be reVned such that the traXc between
the two processors requires less storage then the actual Velds in Ω2.
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Figure 4.17: Solution B: Space-Time Window Reconstruction

The traXc is deposited into the traXc archive – Fig.4.17. When S2 needs to be
reconstructed, the solver reads the traXc archive and uses the commodity power of
end-user hardware to recalculate the solution on Ω2.

This method guarantees that the very same Woating point numbers are obtained,
but does not provide any more Wexibility to the user than the usual submesh
extraction techniques. Therefore, the two implementations are complementary
to one another, and provide a functional way, for actually using the ‘space-time

window reconstruction’ concept in practice. The next section synthesizes these ideas
as proposed solutions to the limitations in the state of the art.

4.5 Closure

This chapter introduced the concept of space-time window reconstruction as a
solution for the state of the art limitations, with a precise purpose of alleviating the
bottlenecks described in the problem statement.

Both Solution A and Solution B are very complex and require gradual validations.
Solution B is a particular version of Solution A, where no sources of errors are
present. Solution A provides more Wexibility and independence for the user, but
trades-oU accuracy and may require revalidation of the physical phenomena. The
second solution, on the other hand, is just as Wexible as the standard submesh
extraction techniques, but guarantees the accuracy of the reconstruction and solves
the data deluge problems.
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In order to fully comprehend the necessary mechanisms and the constraints
that need to be satisVed, a strategic approach to the problem is necessary. The next
chapter introduces the strategy that was used to develop the ‘space-time window

reconstruction’ concept, layered on levels of diXculty.
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‘Make my enemy brave and

strong, so that if defeated, I

will not be ashamed.’

The Pima people 5
Research strategy for space-time
window reconstruction in CFD

The new concept of space-time window reconstruction is complex, of high
impact, and involves a large spectrum of scientiVc Velds.

The author considers that such a demanding goal can only be accomplished
in gradual diXculty levels, starting up with simple but solid foundations and
continuing with more and more complex levels on top. Since the application is for
CFD, the complexity levels need to be organised based on CFD speciVcations.

As any other engineering Veld, computational Wuid dynamics is an art of ap-
proximation. There are three major types of approximation in CFD, according to
Muntean [119]:

• Temporal approximation, which implies the estimation of time-dependant
variables and coeXcients, and the selection of the ∆T time step range.

• Spatial approximation, which deVnes the number of spatial variables used in
the model.

• Dynamic approximation, which selects the most relevant components from
the equation models that best describe the physical system at hand. Terms
which have a negligible impact are removed, so that the computational re-
sources are exploited to the maximum.

During the temporal approximation, the size of ∆T is decided depending on the
numerics involved, and how fast the selected variables and coeXcients evolve in
time.

In spatial approximation, it may be decided that unidimensional (1D), bidimen-
sional (2D), cvasi-3D or complete tridimensional models are going to be used. This
depends on the physical phenomena and the available input data.

With this knowledge at hand, the thesis research is organised into four diUerent
stages. At the very Vrst level, a non-dimensional, laminar (non-turbulent) steady-
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WINDOW RECONSTRUCTION IN CFD

state Wow of an ideal Wuid, is used, taken from [109]. It is called a ‘proof of concept’
in Fig.5.1, and it was designed with simple FEM techniques.

The simplicity of the case translated into a single system of linear equations
in matrix form, and 2D interpolation with triangular meshes. By the nature of
the FEM, the Veld values were present at nodal points in the mesh, obtained via
triangulation. The only Veld in the simulation was non-dimensional.

Figure 5.1: Research Strategy for Space-Time Window Reconstruction
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After the proof of concept was successful, the complexity was increased by
adding rotationary phenomena, and switching to the FVM. The number of spatial
variables was increased from 0 to 2 in the cvasi-3D test case. In both cases, the
space-time window was positioned to start from known initial conditions, identical
to those in the global simulation.

The FVM mesh moved the Veld values from the nodal points to the centre of the
polyhedral cells, and face values had to be interpolated.

With a higher number of spatial variables, vector Velds now had to be dealt
with using their unit versors. The number of Velds and Veld types increased and
each had to be handled independently.

Because of turbulence, the velocity Velds capture spinning vortices that go into
and out from the space-time window.

At the next level, a well known ERCOFTAC benchmark case, introduced by
Lyn and Rodi [120], is used to check if the method is functional. The equations
are elaborated by Anton and Baya [121]. The simulation is now complex LES with
unsteady turbulence features, and very Vne mesh resolution and small time steps.
The supercomputers in Stuttgart were used to develop this test case [1].

To make it more practical, the space-time window was positioned after 5 seconds
of global simulation, and the initial conditions had to be derived geometrically,
both during the extraction (packing) phase, and during the transfer of the Velds
onto the reconstruction mesh. This raised an incredible amount of Woating point
issues, as only someone who experienced the problems can understand. Floating
point numbers are known to be inexact and problematic when one has to program
boolean operations depending on them. Computational geometry logic, like in this
case, is a good example of how bad things can get.

Time is now actually part of the simulation, using a backward diUerencing
scheme. This means that all the errors are cumulative during each iteration, and that
a new system of equations is assembled for each one of the time steps. Information
that is necessary to approximate the initial conditions and to prescribe time-varying
boundary conditions had to be organised in a space-time format, and then used
correctly, in order to conVgure the reconstruction test cases.

With the method also successful at this level, the author attempted to obtain
the very same Woating point numbers during the reconstruction, which led to
the development of the traXc interception approach. This approach has also been
envisioned from the beginning as a backup resort if everything else fails, but without
any fail-safe guarantees. The author had absolutely no idea if any of the attempts
were going to be functional when he started to work on the problem, and this can
be easily spotted from the strategy in Fig.5.1.

This time the approach is radically diUerent. Instead of using network tools to
intercept the traXc, the author wanted to measure the exact number of Woating
point values transported through the processor patches. For that, the processor
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patch implementation was modiVed allowing for algebraic-level information count,
far away from the jungle of communication protocols and headers. It was quite a
surprise to see that inVnitely small approximations in the traXc data, like truncations
of the number of decimals to 10−300, completely destroy the recalculation process.
This clearly made the point that no matter how small, any accuracy error will make
it impossible to obtain the very same Woating point numbers for the Vnite Velds.
However, obtaining the same feature Wows has proven to be possible, even when
interpolation errors are cumulatively introduced.

The next part of the thesis will show the results obtained during each level of
complexity, and the lessons learned from each of the test cases.
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6
Finite element proof of concept. Field

reconstruction inside a window
subdomain of a 2D steady Wow

As shown in Chapter 5, this proof of concept is a non-dimensional, laminar
(non-turbulent) steady-state Wow of an ideal Wuid, modelled using the FEM. This is
the simplest scenario driven to test if the space-time window concept can be applied
to CFD, and eventually understand how. The results have been published in Anton
[122] and Anton and Crȩtu [123].

A non-dimensional simulation, according to Muntean [119], means that there
are no spatial or temporal variables. The Ux and Uy velocities of the Wow can be
derived from the non-dimensional stream function, described in the next section.
The stream function is explained by Resiga [124].

The simplicity of the test case allows the focus to concentrate on computer
science issues, in order to deVne the basic mechanisms and issues to be taken into
account for space-time window reconstruction.

The source code and the test case are fully described by Resiga et al. [109] and
are based on the PETSc Toolkit from Balay et al. [26].

6.1 The test case

For FEM, the unknown variables are located at the vertices of the elemental
shapes, and boundary conditions are set at nodal points.

The stream function ψ is deVned by equation (6.1).

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0

✞

✝

☎

✆6.1

Given that the stream function is known, the horizontal and vertical velocities,
Ux and Uy , are produced by equation (6.2).
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Figure 6.1: Streamlines for the global simulation

Ux =
∂ψ

∂y
, Uy = −

∂ψ

∂x

✞

✝

☎

✆6.2

Fig.6.1 shows the calculated streamlines for the global simulation run. The ψ

Figure 6.2: Extraction at the Border of the Rectangle
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Figure 6.3: ConVguration of Boundary Values

value is a scalar with values between ψ ∈ [0, 1].

Fig.6.2 shows the extraction process where the Γ border of a window deVned by
coordinates (0.4, 0.1) (1.1, 0.5) is cut out and archived.

Figure 6.4: Data Inside the Rectangle Border is Reconstructed by Computation
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Figure 6.5: The Proof of Concept Works

For this particular case, the ψ value is extracted at a number of 10000 points,
equally distributed across the 4 border segments of the region.

The original mesh contains 810 vertices deVning 1556 triangular elements. The
reconstruction mesh is deVned by 2268 vertices and 4427 elements. The Triangle
library is used for mesh generation [125].

In order to match the new, reconstruction mesh with the original sample set
linear interpolation is used – Fig.6.3

The data within the extracted region is fully reconstructed based solely on
the border values, as shown in Fig.6.4. The Wow streamlines clearly resemble the
original solution without disruption. The absolute accuracy obtained by comparing
values at diUerent random points within the reconstructed domain is ǫ = 10−6

against the original solution.
Other windows with coordinates of (0, 0)(0.2, 0.2), (0.5, 0.1)(1.1, 0.3) and

(0.3, 0.5)(0.6, 0.8), are reconstructed in Fig.6.5 with the same level of accuracy.
The same experiment is repeated with only 100 extraction points, and the same

level of accuracy is preserved. The storage requirements necessary for archiving the
ψ values in 100 points represent only 6.05% of the original data.

A particular case for predicting the ψ function without computation can be
implemented by replacing the geometry in Fig.6.1 with a 1-by-1 square, called D

′

.
Let the boundary conditions be deVned by Γ

′

= Γ
′

upper ∪ Γ
′

lower ∪ Γ
′

left ∪ Γ
′

right.

Let the boundary conditions for Γ
′

lower = 0 and Γ
′

upper = 1 be of Dirichlet type

and the ∂Γ
′

left = ∂Γ
′

right = 0 be of Neumann type, for the inlet and the outlet of
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Figure 6.6: The accuracy ǫ varies when the FEM Resolution is Increased

the test analysis domain. If the derivative of a function is 0, the function is constant
over the set of corresponding boundary points; the stream function can be traced to
(6.3) for the 1-by-1 square geometry.

ψ
′

(x, y) = y
✞

✝

☎

✆6.3

In order to deVne the accuracy of the reconstruction, let a discrete subset of
D

′

, be deVned by Q = {(x, y)1, . . . , (x, y)n} ⊂ D
′

. If ψo(x, y) and ψr(x, y)
correspond to the original and the reconstructed values of the stream function at
Euclidean coordinates (x, y), then the accuracy of the reconstruction, ǫ, is deVned
by (6.4).

ǫ = |ψo(x, y) − ψr(x, y)|
✞

✝

☎

✆6.4

The number of arbitrary test points is given by n. In order to test the accuracy it
is important to test both arbitrary points, and also the previously computed locations
used by the original simulation.

DeVne the interpolation resolution R
′

i as the cardinality of the Γ
′

set, or
R

′

i = |Γ
′

|. The interpolation algorithms are deVned by the set A = {Linear,
Polynomial, Cubic_Spline, Cubic_Spline_Periodic, Akima, Akima_Periodic} based
on the implementations in [126].

The original resolution R
′

o and the reconstruction resolution R
′

r are deVned by
the number of elemental shapes contained inside the user-deVned region.

In Fig.6.6 it is shown that the accuracy, ǫ, compared against the value of the
estimated ψ

′

function, is increasing with theR
′

o resolution of the original mesh. This
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Figure 6.7: Reconstruction based on DiUerent Original Mesh Resolutions

leads to the conclusion that it is very diXcult to compare two or more numerical
simulations against each other, in terms of retained accuracy, without referencing
measurement information. For this particular case, it appears that coarser mesh
resolutions of R

′

o = 18 − 25 elements are superior in terms of accuracy to the Vner
meshes.

Figure 6.8: Accuracy of Fine Reconstruction based on Coarse Simulation
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Figure 6.9: Accuracy of Coarse Reconstruction based on Fine Simulation

In Fig.6.7, the ψ
′

value is obtained by starting with data extracted at diUerent
original R

′

o mesh resolutions.
Clearly the reconstruction based on Vner original simulation intersects the

original solution in multiple places. The reconstruction based on a very coarse
original simulation mesh fails to match any of the initial values, and the reconstruc-
tion based on medium mesh simulation resembles the parent solution at a coarser
reconstruction level.

If the initial R
′

o is not too coarse, the reconstruction preserves the original
accuracy even when computed with fewer elemental shapes. On the other hand, if
the initial solution is not Vne enough, the reconstruction will fail.

Fig.6.8 shows what happens when the original simulation is coarse, and the
reconstructed region is Vner. The Wow streams do not coincide any more because
the extraction points are based on far less accurate data, as in the low proVle from
Fig.6.7.

In Fig.6.9, the original simulation is very Vne, but the reconstruction is too
coarse. Again, the streamlines do not coincide any more, as shown in Fig.6.7 at the
high proVle, with a starting region of 18-25 elements inside the extraction window.

The inWuence of R
′

o and R
′

r have been studied during the reconstruction phase.
Fig.6.10, shows the results obtained with diUerent interpolation algorithms used to
conVgure boundary conditions between the extracted Γ

′

set of points. For this, a
|Γ

′

| = 50 points is used.
The tested algorithms are implemented by the GNU ScientiVc Library package
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Figure 6.10: Error Introduced by Interpolation Algorithms

[126]. The results for cubic splines, Akima and linear interpolation are very good.
Polynomial interpolation fails to correctly provide the missing values for larger R

′

i

resolutions. This happens because of the Runge oscillatory eUect, known for the
higher grade polynomials [127].

In order to study the Runge eUect, Fig.6.11 shows that the values interpolated
by the simple polynomial algorithm start to oscillate when the cardinality of Γ is

Figure 6.11: Runge EUect on Polynomial Interpolation Points
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incremented; the number of extraction points deVne the grade of the interpola-
tion polynomial and break out of the bounds when higher than 70. Polynomial
interpolation works well for low number of R

′

i points and is easy to implement.
All the other algorithms work well regardless of the R

′

i resolution, and scale
well to a larger set of extraction points. The interpolation stage is responsible for
reproducing the boundary conditions correctly. If the interpolation algorithm fails,
the reconstructed problem, within the space-time region, becomes entirely diUerent
than the original, and all the other parameters are useless. The following section
drives the Vrst remarks that could be concluded around the idea of space-time

window reconstruction in computational Wuid dynamics.

6.2 Concluding remarks

This very simple CFD test case was designed in order to create a proof of concept
for the proposed idea of space-time window reconstruction, and verify if the goals
are even achievable. The test was a success, and the data was reduced to 6.05%.
Multiple reconstruction windows were produced retaining the original Wow features
with 10−6 accuracy.

On the other hand, the lessons learned were harsh: even for the most simple
Wuid Wows, the success depends on the resolution of the original domain and the
reconstruction mesh. Experiments have shown that even here, without turbulence
or rotationary Wows, the method does not behave like classic submodelling – recon-
struction based on a low number of extraction points, fails to reconstruct theVelds
and the Wow features, no matter how Vne the reconstruction mesh is.

The interpolation algorithm should always be the simplest one – linear interpo-
lation. It appears that if linear interpolation fails, it is more proper to experiment
with mesh and extraction resolutions rather than change the interpolation scheme.
The next text case will introduce rotationary Wows into the scene.
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7
Finite volume test case. Field

reconstruction inside a window
subdomain of a cvasi-3D steady Wow

The purpose of this experiment is to check if the method can be applied on
turbulent Wows, and mainly on turbulent boundaries for the cut region. Due to
the nature of the FVM implementation in OpenFOAM [27], the 2D case has to
be rendered in 3D space with only one discretisation level for the Z-axis. This is
called ‘cvasi-3D’, as shown in Chapter 5. The GSL library [126] is still used for
interpolation, but this time the extraction of the Velds is performed with internal
OpenFOAM methods.

For the Vnite volume method, the unknown variables are centred inside the
elemental volumes, and boundary conditions are conVgured as patches at the surface
level. The results have been published in [122]. The chapter will now continue with
the presentation of the test case, and the results obtained at this stage.

7.1 The test case

In Fig.7.1 the test case is taken from [128] and standard OpenFOAM [27] tutorials.
It is a steady rotationary Wow over a backward-facing step.

The governing equations are given by (7.1) and (7.2).

∇ · U = 0
✞

✝

☎

✆7.1

∇ · (UU) + ∇ ·R = −∇p
✞

✝

☎

✆7.2

where U is the velocity, p is pressure and R is a viscous stress term.
The global simulation in Fig.7.2 shows the velocity contours at time steptidx =

1000. The time steps in this simulation do not represent real, physical time, they

65



CHAPTER 7. FINITE VOLUME TEST CASE

Figure 7.1: Geometry of a Backward-Facing Step

are just the means of achieving convergence. Time in a steady-state simulation, if
present, is called ‘pseudo-time’.

A user-deVned rectangular hexahedron with coordinates (0.05 -20 -0.5) and (0.2
10 0.5) is extracted from the solution in Fig.7.2. Each side of the 2D rectangular
projection contains 100 points. After sampling the values for p, Ux, Uy , Uz and the
necessary Velds, the values are interpolated using cubic splines, as in Fig.7.3.

The splines are used to conVgure the values at the boundary of the reconstruction
domain: smartPatches are setup around the window (in this case, a cvasi-3D
hexahedron) and the same solver is used to recompute the internal Velds.

Fig.7.4 shows that the reconstructed vector Velds retain the original Wow features
and depicts the velocity glyphs forming a vortex.

A zoom-in, Fig.7.5, shows that the vortex ends around x = 0.15 as the stream
continues to follow a forward path across the geometry.

The user-deVned region of interest at iteration (pseudo-time step) 1000 recon-
structs the original pressure and vector Velds with an absolute accuracy of ǫ = 10−1.
This was checked by sampling arbitrary points inside the reconstructed Velds and

Figure 7.2: Global Simulation
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Figure 7.3: Interpolated smartPatches around the Reconstruction Window

comparing them with the values for the same locations in the global simulation.

The accuracy of the reconstruction occasionally breaks up to ǫ = 0.11. Fig.7.6
shows the evolution of a random pressure probe inside the analysis domain, during
each iteration. At Vrst, during the initial conditions, the values are identical. The Vrst
iteration breaks them apart, and then they converge together to be indistinguishably
identical after less than 1000 rounds.

Figure 7.4: Data Inside the Window is Reconstructed
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Figure 7.5: Zoom-in on Reconstructed Area

The original mesh consists of 12225 hexahedral cells, 49180 faces and 25012
points. The reconstruction mesh has 10000 hexahedra, 40200 faces and 20402 points.
The storage requirements are reduced to 0.27% per time step (consisting of the
extracted Veld values), with the original geometry adding another 10.4% from the
original simulation data.

It is important to note that in this cvasi-3D case time is only pseudo-time, because
of the steady-state model. That makes time steps independent of one another, and
easy to reconstruct. For transient simulations, the inWuence of the neighbouring
time steps is critical, as it will be shown in the next chapters. The conclusions
observe that even for rotationary Wows, the space-time window reconstruction idea

Figure 7.6: Pressure probe convergence
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is feasible.

7.2 Concluding remarks

This test case introduced the space-time window reconstruction idea to rota-
tionary Wows. Basically, it conVrms that when having turbulence at the boundary
conditions, with vortices that enter and exit throughout the cut region, the recon-
structed Velds still preserve the Wow features. Even more, this validation provides
the basic concepts and mechanisms that need to be developed in order to obtain
similar results with unsteady Wows in OpenFOAM.

The next chapter presents two test cases for unsteady turbulent Wows, and their
reconstruction results obtained with OpenFOAM.
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‘A man must make his own

arrows’.

Winnebago 8
Space-time window reconstruction in a

3D unsteady complex Wow based on
submodelling

The previous test cases used implementations of lower complexity. As shown in
the concentrated schema of Chapter 5, this chapter uses fully transient (unsteady)
turbulent Wows, to prove the space-time window reconstruction concept. It is organ-
ised into four sections: one that explains the implementation, one that discusses how
and when time interpolation can be introduced, another one with a very complex
ERCOFTAC demonstration – as a means for applying the new space-time window

reconstruction concept on real-world, well-known computational Wuid dynamics
test cases – and the closure with the concluding remarks. The chapter is now
continuing with implementation details.

8.1 Implementation details

The ‘Extend Project’ for OpenFOAM is an independent, community driven
toolbox, improved with user contributions, and developed in the spirit of the Open
Source movement. Considering that the space-time window reconstruction concept
is new, one goal of the research is to produce a new tool, suited for the space-time

window reconstruction concept and capable of generating new scientiVc results.
Right now, the tool plays the role of a ‘software booth’, which needs to be improved
with the help of professionals coming from other Velds of expertise, such as hydraulic
engineering and applied mathematics. As a medium-term prospect, after all the
validations which are not computer science related are performed, the author intends
to submit the Vnal revision of the software as an independent tool for the ‘Extend
Project’ community.

Because the complexity of the test-cases introduced in this chapter reaches the
highest level, this section continues with speciVc implementation details and the
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approaches chosen to develop a functional solution.

Figure 8.1: Extraction Points for the Initial Fields – Γinitial

One of the most serious issues when implementing boolean logic is the handling
of decisions when they have to be based on Woating point numbers. Floating point
arithmetic only retains data with limited accuracy, and can not always represent
the exact numbers that are supposed to be carried by the hardware [129]. This
problem is negligible in terms of solution accuracy, but it turns out to be a nightmare
when the program Wow depends on Woating point comparisons. Results have been
previously published in Anton [130], and Anton and Crȩtu [131].

Figure 8.2: Subdomain Reconstruction Mesh

The easiest way to stumble into the Woating point jungle is to implement, or
use, high resolution geometric algorithms. A common example from numerical
simulation software, can be related to volumetric structures, with point location
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algorithms. In other words, trying to locate a geometric point, on the surface of a
control volume (cell), or on the line belonging to an edge, can get very tricky. The

Figure 8.3: Tetrahedral Decomposition

usual way to go around is by range-checking. The developer can deVne whatever
seems to be small enough, small, very small and even smaller – and sometimes it
works, sometimes it doesn’t. And sometimes the same goes for the upper limits!
The point is, the problem usually surfaces only when it is too late, in the most
unpleasant moments.

A smarter, and sometimes useful method for dealing with boolean geometric
statements, that have to rely on Woating point values, is to use complementary, and
redundant, geometric algorithms for cross-validation. Or, one could use a diUerent
type of coordinate system to try and obtain the same program Wow. This basically
consumes resources and slows down both the implementation, and the running time
of the program.

This thesis certainly does not try to explain Woating point development tech-
niques – a very good review on the subject is available in [132]. On the other hand,
this kind of circumstances may be encountered millions, billions, or even trillions
of times, for instance when sampling Veld data inside moving meshes. Smarter
approaches are always necessary, to get things going. For our test-cases, point
location problems were performed millions of times, with static meshes.

Consider the Γinitial set of points in Fig.8.1. The work has been published
in Anton and Crȩtu [131]. The implementation is based on the Vnite volume,
OpenFOAM toolkit [27]; phenomena evolution inside the Vnite volume cells is
considered to be linear.

The scalar and vector Velds used by the numerical solver are interpolated at the
coordinates provided by the Γ = Γinitial set for the initial Velds, and by Γ = Γlimit

for the subdomain boundary faces.
A new mesh is generated inside the subdomain, in order to reconstruct the Velds

by recomputation – Fig.8.2. To transfer the initial Velds to the new mesh, the Γinitial
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points are considered to describe a regular, hexahedral extraction mesh, similar to
the one in Fig.8.2, and usually on a diUerent resolution. For practical reasons, any
space-time window is considered to be a hexahedron, deVned by the coordinates of
a bounding box. This extraction mesh is decomposed into tetrahedral elements, like
it is shown with the cell in Fig.8.3.

a = x1 − x4; d = y1 − y4; g = z1 − z4;
b = x2 − x4; e = y2 − y4; h = z2 − z4;
c = x3 − x4; f = y3 − y4; k = z3 − z4;

A = e*k − f*h; D = c*h − b*k; G = b*f − c*e;
B = f*g − d*k; E = a*k − c*g; H = c*d − a*f;
C = d*h − e*g; F = b*g − a*h; K = a*e − b*d;

Z = a*(e*k−f*h) + b*(f*g−k*d) + c*(d*h−e*g);
10

l1 = (1/Z) * (A*(x−x4) + D*(y−y4) + G*(z−z4));
l2 = (1/Z) * (B*(x−x4) + E*(y−y4) + H*(z−z4));
l3 = (1/Z) * (C*(x−x4) + F*(y−y4) + K*(z−z4));
l4 = 1.0 − l1 − l2 − l3;
if (l1 + l2 + l3 == 1.0) l4 = 0; // FP limitation

if ((l1>=0)&&(l1<=1) && (l2>=0)&&(l2<=1) &&
(l3>=0)&&(l3<=1) && (l4>=0)&&(l4<=1)) {

pval = l1*val[4] + l2*val[5] + l3*val[0] + l4*val[7];
return (pval); 20

}

Figure 8.4: Tetrahedral Interpolation Algorithm

Equations (8.1), (8.2) and (8.3) show the formulae for tetrahedral interpolation.
For each point P (x, y, z) with the Cartesian coordinate vector p, the value of a Veld
in point P is given by Φ3D, where Φi=1..4 is the value of the Veld in the vertices of
the tetrahedra, and pi=1..4 are the coordinates of the tetrahedra.

The λ1, λ2, λ3 and λ4 coeXcients are the barycentric coordinates of the tetrahe-
dra.

T =





x1 − x4 x2 − x4 x3 − x4

y1 − y4 y2 − y4 y3 − y4

z1 − z4 z2 − z4 z3 − z4





✞

✝

☎

✆8.1





λ1

λ2

λ3



 = T−1(p− p4)
✞

✝

☎

✆8.2
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Φ3D = λ1Φ1 + λ2Φ2 + λ3Φ3 + λ4Φ4

✞

✝

☎

✆8.3

The 3D interpolation procedure is also described in Fig.8.4. Due to limited
Woating point representation and errors, it is necessary to perform redundant checks
whenever possible.

The Γlimit boundary conditions are approached with similar algorithms in 2D.
The 6 surfaces of the extraction subdomain are decomposed into triangles, and each
point P (x, y) from the boundary is prescribed on the reconstruction mesh using the
formula in (8.4).

A is the area of the triangle in Fig.8.5, described by Cartesian pointsP1(x1, y1),
P2(x2, y2) and P3(x3, y3), and Φ1, Φ2, Φ3 are the Veld values at the triangle vertices.

Figure 8.5: 2D Linear Interpolation inside Triangle

Φ2D = 1
2A

((x2y3 − x3y2 + (y2 − y3)x+ (x3 − x2)y)Φ1

+ (x3y1 − x1y3 + (y3 − y1)x+ (x1 − x3)y)Φ2

+ (x1y2 − x2y1 + (y1 − y2)x+ (x2 − x1)y)Φ3)

✞

✝

☎

✆8.4

For the vector Velds, the 2D and 3D interpolation procedures are repeated for
each of the versors.

The entire directory structure can be archived and compressed by any of the
popular tools, for easier transportation.

The logic scheme of the extraction algorithm is presented in Fig. 8.6. For all the
points in the extraction mesh (np), the Vrst test veriVes if the desired location is
contained by the bounding box, (P in BB), containing the current source cell. If it is
not contained, then it is clear that the present cell does not hold the coordinates.

Usual space-time windows can contain 103 − −105 time steps, and require a
great amount of iterations, in order to extract all the necessary points.

Having this in mind, irregular cell shapes and unstructured meshes can seriously
lag the point inclusion tests.
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Figure 8.6: Point Extraction Logic

The previous location has provided the present cell, so the current location can
only be one step away in the neighbourhood.

The Vner the extraction mesh, the higher the probability that the desired location
is somewhere in the adjacent layer, like in Fig. 8.7.

Figure 8.7: Neighbour Cells

If the extraction mesh is dense, there’s also a chance that the desired location is
still inside the present cell, and that the step value was not large enough to take it
outside the volume. Therefore, it is worthy to check for it with the P in Cell test.

For hexahedral meshes, the adjacent neighbourhood consists of only 6 cells. If
the mesh is also regular, the inclusion tests can be performed faster, with simple
arithmetic comparisons for minimal and maximal values. For very complex geome-
tries, the algorithm can be extended, in order to include multiple layers within the
neighbourhood.

The Veld values for the Γinitial and Γlimit coordinates are stored in a subwindow
directory like in Fig.8.8. Complete boundary values are saved for all the time steps.

Fig.8.9 shows the algorithm for the extraction mesh. The coordinates of each
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point are located at equal step distances, in all of the three dimensions.

./spaceTimeDir/

5.000000e+00/full/scalars/k

..

5.000000e+00/full/scalars/p

5.000000e+00/full/vectors/U

5.000000e+00/full/vectors/U_0

5.000000e+00/scalars/k

..

5.000000e+00/vectors/U_0

..

5.005000e+00/scalars/k

..

5.005000e+00/vectors/U_0

boundingBox

Figure 8.8: Directory Structure for the Space-Time Window

The bounding-box check usually introduces additional computations inside the
point iteration loop. The reason for this test is to deal with higher-order polyhedrons.
Fig. 8.10 shows such an example.

The point-in-cell test is only performed if the location has been veriVed to be
inside the bounding box. Otherwise, mesh.VndCell() is going to be called, and the
octree mesh structure will be scanned for the cell containing the new location. Much
smarter algorithms can be developed based on these simple, yet elegant principles,
also considering the time-varying nature of the data, and possible mesh movements.
However, for the practical purposes, the goals have been achieved.

In order to stress test the speed improvements, three levels of mesh densities are
used: a coarse mesh with 70176 cells and 76615 points, a medium mesh with 402144
cells and 422400 points, and a Vne mesh with 3328308 cells and 3410064 points.

The measurements have been performed on a Q6600 2.4 GHz machine, with
standard system calls. Fig. 8.11 shows the results of the unmodiVed, naive algorithm,
against two level of improvements: the point-in-cell test combined with and without
the point in bounding-box test.

It is evident that the naive algorithm is impractical for any large number of
mesh extractions. Even for the medium mesh, it takes about an hour to complete.
The smarter versions, however, show a considerable improvement in performance –
they are better compared in Fig. 8.12.

Fig. 8.12 shows that the two versions have very similar performance for all mesh
resolutions. The operations that required the naive algorithm almost an hour on the
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for (k=0; k<Ndensity; k++) {
for (j=0; j<Cdensity; j++) {

for (i=0; i<Rdensity; i++) {
origin = i*stepx + j*stepy + k*stepz;
minI = origin;
maxI = origin+stepx+stepy+stepz;

. .
p4 = origin+stepz;
p5 = origin+stepz+stepx;
p1 = origin+stepx 10

p0 = origin;
p6 = origin+stepy+stepz;
p7 = origin+stepx+stepy+stepz;
p3 = origin+stepx+stepy;
p2 = origin+stepy;

Figure 8.9: Extraction Mesh Generator

medium mesh, are now completed in a little more than a minute.
There is a slight decrease in performance on the combined bounding box version.

This is because of the additional arithmetic that takes place during each point
iteration. On hexahedral meshes, the bounding box test is unnecessary. However,
the penalty introduced by the additional code is negligible. On the Vne mesh,
the diUerence is less than 5 seconds, and it pays oU to insert the additional code
whenever the extraction is performed on unstructured meshes, with many higher-
order polyhedrons.

Figure 8.10: Bounding Box over Polyhedron

Taking advantage of the geometric particularities is worth the cause. The
improvements overcome an algorithmic barrier that would have otherwise render
the previous solutions impractical, and expensive in real-world applications.

The bounding box implementation is expected to outperform the simple point-
in-cell test, on complex, irregular meshes. A point in cell test is basically a point in
polyhedron test, where the polyhedron can have an unlimited number of faces. The
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irregular meshes are required for those regions where user-reVnement is necessary,
in order to capture the simulated phenomena; they are applied in the diXcult
portions of the analysis domain.

Figure 8.11: Algorithm Comparison

The performance of the extraction algorithm has been improved from several
days of running time (depending on the mesh size), to a matter of minutes, by
carefully taking into account the geometric particularities of the space-time window.
The following sections continue with the two unsteady test-cases, one designed

Figure 8.12: Algorithm Performance

to understand the issue of time interpolation, and one chosen to demonstrate the
space-time window concept on real-world, industrial problems.
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8.2 Time interpolation in a specially crafted

test case

This test case has been speciVcally engineered to allow for cut-boundary inter-
polation through both time and space. That is, we need to make sure that when
boundary information for a given time step is missing, the interpolation will not
introduce errors. For this purpose, the mesh has been designed so that the Wow
captured as entering the space-time window, is constant through time, or at least it
can be approximated with linear interpolations. The window captures vortices, but
only as they form inside the subdomain, travel towards the exterior, and never get
back in.

Without this particularity of the simulation, time interpolation introduces inac-
curacies at the boundary level, rendering the recalculated Wow features incompatible
with the global simulation. Since not all the time steps need to be sampled in
the space-time archive, because of the time interpolation, the size of the data is
considerably reduced.

The domain of analysis in Fig.8.13 is a cavitation problem based on the Open-
FOAM tutorial, with a slightly modiVed mesh [27]. The equations and the solver
are described in [133].

Figure 8.13: Domain of analysis

The global simulation is a 3D Wow using a timestep ∆t = 10−8 s on a mesh with
82238 cells, with a time interval from t0 = 3e−06 to t9996 = 10−4 s. The space-time
window is deVned in the region of (7.1, -2, -0.11)(16, 2, 0.11) from t0 = 3e− 06 to
t1300 = 1.5e− 05 s.

A writing interval of wi = 10−6 s is used, which means that out of 100 time
steps, 99 are only used in RAM for computation, and never get to be stored on
the disk. In this case, these are the same time steps that get skipped during the
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space-time window extraction process, so that when the solution is recalculated, the
missing boundary values are interpolated based on the known values from within
the encapsulating time interval.

The space-time window uses a 40 × 30 × 10 extraction mesh, with a total of
736800 Woating point numbers. This is only 1.93×10−5% from the global simulation,
while still preserving the Wow features in the space-time region.

Fig.8.14 compares the streamlines for t0 = 3e−06 s. Fig.8.14(a) depicts the global
streamlines from the initial simulation. In 8.14(b), the reconstructed streamlines
are showed for comparison, and they clearly exhibit the same vortex and velocity
features as the global version. To better emphasise this, the global streamlines are
overlaid with the reconstructed velocity vectors in 8.14(c), so that the same vortex
features are more evident. The results in the space-time window are compatible
with the global simulation.

The same comparison is performed in Figs.8.15 and 8.16, but on diUerent time
steps. The vortices in Figs.8.15(a) and 8.15(b) are shifted to the right, towards the exit
of the space time window, and are better captured in Fig.8.15(c) with the velocity
vectors.

A streamline is a line in the Wuid whose tangent is parallel to the local velocity
vector in every point of the Wow. Therefore, the family of streamlines at time t
are solutions to a given system of equations, and families with various numbers of
streamlines can be plotted during the same time step. Thus when comparing the
global streamlines against the reconstructed features, it is important to consider that
the local space-time window may capture the global streamlines at a diUerent level
of zoom, with a diUerent solution space – but always with common main features.

By overlapping streamlines with velocity vectors, it is easy to verify if the
rotationary phenomena are correctly captured. The number of velocity vectors used
in the plot is also a matter of visualisation software, therefore the comparison should
testify that the main Wow features are preserved. The higher level of detail presented
in the space-time region is better compared in Figs.8.17-8.18 and Figs.8.19-8.20, where
the velocity and pressure proVles directly map the Veld values.

In Figs.8.16(a) and 8.16(c) a new vortex is captured as it forms nearby the
entrance into the space-time region. Fig.8.16(b) does not show this feature because
the streamline plotter is using a diUerent level of zoom; however, the main Wow
features as shown in the central streamlines are preserved. It is also important to
notice that the scales for the global and reconstructed velocity Velds are almost
identical.

The reconstruction of the space time window requires 4912.81 s on commodity,
end-user hardware. The global simulation required about one day of work on the
same quad-core machine, a Q6600 at 2.4 GHz, using 3 cores out of the 4 available,
and covering a time interval until t = 2.3e− 05 s.

The evolution of the global velocity proVles is given in Fig.8.17, for comparison
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(a) Global streamlines

(b) Reconstructed streamlines

(c) Reconstructed velocity vectors against global streamlines

Figure 8.14: Streamlines and velocity vectors at t = 3e− 06
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(a) Global streamlines

(b) Reconstructed streamlines

(c) Reconstructed velocity vectors against global streamlines

Figure 8.15: Streamlines and velocity vectors at t = 9e− 06
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(a) Global streamlines

(b) Reconstructed streamlines

(c) Reconstructed velocity vectors against global streamlines

Figure 8.16: Streamlines and velocity vectors at t = 1.5e− 05
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(a) t = 3e − 06

(b) t = 9e − 06

(c) t = 1.5e − 05

Figure 8.17: Global velocity contours
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(a) t = 3e − 06

(b) t = 9e − 06

(c) t = 1.5e − 05

Figure 8.18: Recalculated velocity contours
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(a) t = 3e − 06

(b) t = 9e − 06

(c) t = 1.5e − 05

Figure 8.19: Global pressure contours
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(a) t = 3e − 06

(b) t = 9e − 06

(c) t = 1.5e − 05

Figure 8.20: Reconstructed pressure contours
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with the reconstructed data in Fig.8.18. Figs.8.17(a) and 8.18(a), 8.17(b) and 8.18(b),
and 8.17(c) with 8.18(c) all conVrm that the evolution of the velocity proVles in the
recalculated region, during the space-time interval, is compatible with the global
simulation.

The pressure velocity proVles evolve as in Fig.8.19, and are compared with the
reconstructed version in Fig.8.20. DiUerent snapshots for the same time interval are
considered, with 8.19(a) and 8.20(a), 8.19(b) and 8.20(b), and 8.19(c) against 8.20(c). It
is clear that the Wow features are preserved, and the low-pressure regions which
trigger vortex phenomena are shown to shift towards the exit of the space time
window.

The entire idea behind this test case is to verify when and how time interpolation
can be applied. In an unsteady simulation, the boundary patches around the space-
time window keep Wipping their behaviour towards the analysis subdomain as either
inlets, either outlets. This change in behaviour is worsened by any turbulence or
nonlinearity present in the cut-boundary region.

The results show that when turbulence can be constrained to patches displaying

outlet behaviour, time interpolation becomes possible, due to the fact that the
boundary inaccuracies introduced by the interpolation algorithm at the inlet patches,
are negligible. This has to hold true for each of the simulation time steps.

The problem of identifying natural phenomena where these constraints can be
satisVed is diXcult, and it still is a matter of debate. However, it is important to
remark that time interpolation strongly ampliVes all the beneVts of the space-time

window reconstruction concept.

The equations used throughout this thesis are inVnitesimal, describing contin-
uum mechanics. Because of that, it is always possible to zoom-in further in the
simulation, and capture more details. It is up to the physics to describe a phe-
nomenon where all the Wipping inlet boundary conditions can be approximated as
linear or even constant, through time.

For now, time interpolation has been shown to be possible, given that the
necessary constraints are satisVed, but only in a test case where the mesh has
been engineered to support it. A reVned mesh for the very same test case starts
capturing turbulent phenomena at the main space-time window inlet, rendering all
time interpolation eUorts unsuccessful.

The next section uses a real-world simulation, which has been validated against
experimental data and against results from literature. Time interpolation is not
used any more, since the boundaries are highly nonlinear, and the cut region is
located in the middle of a turbulent Wow. For the space-time window reconstruction

concept to be applied, information from all of the time iterations has to be extracted
and stored. The thesis will now continue with the most complex scenario, for the
implementation based on submodelling.
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8.3 The ERCOFTAC square cylinder benchmark

The square cylinder benchmark is a well known ERCOFTAC [120] test-case.
The setup is an OpenFOAM [27] implementation.

Figure 8.21: ERCOFTAC Square Cylinder

Consider the square cylinder presented in Fig.8.21. The inlet velocity is U =
0.535m

s
and the Reynolds number is Re = 21400. More details are given in Lyn

and Rodi [120].

∇ · (ρ~v) = 0
✞

✝

☎

✆8.5

∂(ρ~v)

∂t
+ ∇ · (ρ~v~v) = −∇p+ ∇ ·

~~τ ′ + ρ ~fm

✞

✝

☎

✆8.6

An LES simulation is performed in order to show the Karman vortex shedding
that takes place behind the cylinder as in Fig.8.22.

The governing equations are given by continuity and momentum as described

in (8.5) and (8.6), where
~~τ ′ is the viscous stress tensor and fm are body forces.

The centre of the cylinder is conVgured as a reference frame. The diameter
of the square cylinder is D = 0.04m. The overall bounding box of the analysis
domain, in meters, is given by (-0.4 -0.28 0) (0.96 0.28 0.392).

Karman vortex streets are frequently found in nature. High-altitude mountain
peaks, islands, skyscrapers and cables are known to produce vortex streets.

Perhaps the most frequent encounter is provided by industrial chimneys. When
the wind produces street vortices behind the chimneys, it induces structural stress
forces that can be dangerous. Spiral ridges are used to attenuate the phenomenon.
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Figure 8.22: Karman vortex street

Fig.8.23 depicts the streamlines that form the vortices behind the square cylinder
obstacle. Fig.8.24 shows the LES simulation result at 5 seconds distance from the
initial start-up.

In Fig.8.25 a space-time window of 75 time steps, described by a bounding box
with coordinates (0.045 -0.1 0.05) and (0.15 0.1 0.35), is extracted starting with t = 5s.
The sampling mesh is deVned by 99 × 99 × 99 cells, with 100 sampling points for
each dimension. The global LES simulation has more than 3.3 million cells.

In order to reconstruct the internal Velds, a new mesh, of 100× 100× 100 cells,
is generated. The boundary values from t1 = 5s up to t75 = 5.0075s are linearly
interpolated on the new mesh, using the extracted values. With a∆t = 10−4s, the
boundary conditions for 75 time iterations are stored into the space-time window
capsule.

The Wux Q is deVned in (8.7), where ~U is the velocity and ~n the normal to the
surface dS.

Q =

∫

S

~U · ~ndS
✞

✝

☎

✆8.7

For incompressible Wuids (with constant ρ density), the conservation laws impose
that in Fig.8.26 Qinflow = Qoutflow, at any moment in time. This must hold true
in order to satisfy (8.5), basically stating that the mass getting into the space-time
window equals the mass exiting the space-time window, for each of the 75 time
steps; the mass conservation is said to be preserved.
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Figure 8.23: Streamlines for the Karman vortex street

However, the extraction of the space-time window is based on linear interpola-
tion. The global simulation is based on nonlinear systems of PDEs. This results in
conservation errors that need to be monitored and controlled.

For the purpose of this research, the acceptable error range is considered to be
less than 1%. This is computed using the formula in (8.8) for each time step in the
space-time window.

C =
|Qinflow −Qoutflow|

Qinflow

× 100
✞

✝

☎

✆8.8

Fig.8.27 depicts the global streamlines passing through the window subdomain,
and the extraction edges. The mass conservation inside the space-time window
is preserved in acceptable ranges. For time step t1, the mass conservation error
is C1 = 2.5 × 10−1%. It slowly increases until the last time step, at t75 being
C75 = 1.13 × 10−1%. The magnitude of the conservation error depends on the
nonlinearity of the boundary phenomenon, and it may increase or decrease through
time.

In OpenFOAM, the functionality required to conVgure the space-time window
for reconstruction is provided by time-varying boundary conditions. The recal-
culated window subdomain is depicted in Fig.8.28. The submodelled streamlines
clearly follow the path found by the global simulation, as can be seen in Fig.8.29.

The velocity contours from the submodelled window are also in agreement with
the streamlines from the global simulation.
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Figure 8.24: Global Domain Simulation

In fact, in Fig.8.30, after 75 time iterations, the submodelled window captures
half of a vortex as it enters through the surface.

The complete simulation would require 15 Gb of data to be downloaded and
archived, after being subsampled to 0.5 s intervals. Such a subsampling prohibits
the visualisation of the result in real-time animations. More realistic subsamplings
vary from 100Gb to 1Tb, depending on the requirements. LES always produces
large results, because it requires very Vne meshes.

The global simulation, generated on 8 distributed processors takes more than 24h
for less than 3 seconds of simulation. For 20 seconds of simulation, a 256 processors
cluster is used for 24 hours of work, thanks to the bwGRiD supercomputers [1].
On the other hand, reconstructing the space-time window on end-user hardware
takes about 1 minute per time iteration. This allows for high-resolution numerical
results to be obtained again on commodity hardware, without any use of expensive
computers.

The mesh in the space-time window is 5.43 times Vner than the global mesh
in that region. This produces a zoom-in eUect, allowing for better details to be
captured in the space-time window. Even so, the Wow features are clearly preserved
between the reconstructed and the global version of the simulation.

Fig.8.31 shows the pressure isocontours that form in the initial simulation.
Figs.8.31(a), 8.31(b) and 8.31(c) are snapshots taken after a diUerent number of time
iterations.

In order to better follow the phenomenon, Fig.8.32 shows the Karman vor-
tex street ‘in motion’, using 3D pressure contour features. The 3D vortices from
Figs.8.32(a), 8.32(b) and 8.32(c) correspond to the proVles in 8.31(a), 8.31(b) and
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Figure 8.25: Extraction of The Bounding-Box Behind the Square Cylinder

8.31(c).
Using the space-time data, the vortex features inside the window are indepen-

dently recalculated, with the same solver, as shown in Fig.8.33. The 3D vortices
in Figs.8.33(a), 8.33(b) and 8.33(c) are obtained after a diUerent number of internal
solver iterations for each of the 75 time steps. In other words, 75 time iterations in re-
ality produce a total number of numerical iterations which is an order of magnitude
higher, due to convergence loops.

Unlike the previous test-case, where time interpolation has been shown to be
possible, in this case, time interpolation is no longer possible. This means that data
from all of the time steps needs to be extracted and stored for the space-time window.
In reality, not all these time steps are stored to the disk, and it is a common practice
to subsample the global simulation. However, space-time information needs to be
extracted from all the time steps, including those which do not normally get written

Figure 8.26: InWow and OutWow through the Space-Time Window
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Figure 8.27: Global Streamlines through the Window Subdomain

to the disk. The problem can be alleviated through implementation improvements,
but nevertheless, the size of the space-time window data is increased.

On the other hand, the smaller the time step ∆t is, and the larger the time
interval covered by the space-time window has to be, the bigger the size of the data
in the space-time window becomes.

Currently, there are two levels of interpolation present. The Vrst one is per-
formed when the data is sampled from the global simulation. The second one is used
when the extracted data has to be mapped on the new, reconstruction mesh. Instead
of using two levels of interpolation, the implementation could replace the Vrst one
by extracting only calculated data from the global simulation, so that the bounding
box of the space-time window is contained by the coordinates of the sampled points.
This also removes the problems with the resolution of the extraction.

For now, data is sampled according to a regular hexahedral mesh. This is
suboptimal in terms of the number of necessary coordinates. For instance, regions in
space and time where data is coarse do not require Vner resolutions for extraction,
but data is extracted at regular distances anyway. Also, in regions where the
calculated information is dense, the extraction mesh can be too coarse and miss
important bits, unless the entire space-time extraction has enough resolution. The
higher the extraction resolution, the more data needs to be stored in the space time
window, with or without practical utility. Even so, the results are remarkable.

The interpolation algorithm is linear in both 2D and 3D space. Tetrahedral
interpolation is used for the initial 3D Velds, and it works well on unstructured
meshes with higher-order polyhedrons; however, the results may be diUerent de-
pending on the way a particular mesh is formed and decomposed into tetrahedra.
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Figure 8.28: Submodelled Streamlines

The current implementation uses one form of decomposition of regular hexahedra
into 6 tetrahedra, and this suXces for the state of the development.

Modern supercomputing faces three levels of bottlenecks: HPC facility level,
gateway level, and user level. The Vrst level can be alleviated by using the space-time
window extraction tool remotely, inside the supercomputer facility. This allows the
user to archive, compress and download only the space-time window information
from within the HPC centre. Due to the fact that supercomputers usually beneVt
from high performance, networked Vlesystem services, the reconstruction phase can
not be executed on HPC systems, with the present implementation. The current
implementation makes use of a considerable amount of small Vles, required by the
OpenFOAM classes, a particularity which may create serious problems when run
on such Vlesystems.

The problem can be solved by modifying the implementation, however, the
reconstruction is not designed to be run on supercomputers, but on end-user hard-
ware.

For solvers which require very small time steps, like ∆t = 10−8 s, the recon-
struction process can be further accelerated on the user machine by taking advantage
of the aUordable technologies. General-Purpose computation on the Graphics Pro-
cessing Unit (GPGPU), or many-core machines can be used to massively parallelise
the matrix-vector operations. FPGAs can be used to speed-up the computation.
Therefore, the space-time window reconstruction concept has great potential for
commodity hardware.

The second and the third level of bottlenecks are implicitly relieved from the
data deluge, because the data that needs to be transported throughout the network
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Figure 8.29: Submodelled Streamlines follow Global Streamlines

and the Internet is reduced to one or more space-time windows.
In Fig.8.34, the reconstructed pressure isosurfaces are compared with the global

stream lines. It is clear that the reconstructed Velds inside the space-time window
retain the same Wow features from the global simulation.

After all time steps converge, the vortex features do not present any sign of
numerical diUusion. This means that the method is feasible.

The space-time window for the complete set of 75 time steps requires about the
same number of Woating point entries as a single time step in the global simulation,
which is 46600000 64-bit numbers. This makes it occupy much less space than a
complete simulation where, like in this case, 100 global time steps are written to the
disk, and the data is practically reduced to 0.87%.

The possibilities and the Wexibility that are introduced, alongside with the
alleviation of the bottleneck problems, are virtually limitless. Not only that the data
deluge problem is solved, but the user is given back his freedom over the analysis.

Instead on depending on the global simulation, the user can improve the mesh,
and even change to more appropriate dynamic models inside the space-time window.
For instance, considering that this test case presents the Wow over an obstacle, addi-
tional obstacles can be introduced, gradually or not, in the space-time reconstruction
region.

On the other hand, the user can now calibrate the results for or against other
independent simulations, space-time windows or not. For example, the reVned and
reconstructed space-time region can be used as input for a new simulation. The
implications in multi-scale analysis and multiphysics are major.

For a more appropriate comparison between the global and the reconstructed
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Figure 8.30: Global Streamlines vs Submodelled Velocity Contours
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(a) tidx = 0

(b) tidx = 35

(c) tidx = 75

Figure 8.31: Global pressure Velds
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(a) tidx = 0

(b) tidx = 35

(c) tidx = 75

Figure 8.32: Vortex street in motion
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(a) tidx = 0

(b) tidx = 35

(c) tidx = 75

Figure 8.33: Reconstruction of the vortex features inside the space-time window
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Figure 8.34: Submodelled Streamlines vs Reconstructed Pressure Contours

Velds inside the space-time window, Fig. 8.35 plots the evolution of the scaled
percent diUerence through time. The scaled percent diUerence is deVned by (8.9),
where eg and er are the global and reconstructedVelds, with the scale given by the
emax and the emin values at a given time step.

D =
|eg − er|

|emax − emin|

✞

✝

☎

✆8.9

The author considers a vector to be more prone to modiVcations through time.
For this reason, the velocity vector Veld U has been chosen as a basis for comparison
between the global simulation, and the space-time window Velds. The Ux compo-
nent is parallel with the direction of the Wow, and is used in the comparison as a
representative for the U vector, due to the fact that it has the highest potential to
change between time steps.

Fig.8.35 displays both the maximal and averaged values for the scaled percent
diUerenceD. TheDavg increases very slowly from nearby 0 toDavg ≤ 0.5%. This
deVnitely proves the point that the space-time window reconstruction results are in
agreement with the global simulation, in spite of possible zoom-in eUects.

In fact, the slow increase in the average diUerence Davg , reWects the cumulative
nature of the interpolation approximations and the higher level of mesh reVnement
used in the space-time window reconstruction.

The maximal diUerenceDmax varies between 9−−21%. These are high values,
but are explained in Fig.8.36.

As shown in Fig.8.36, the number of points that have a scaled percent diUerence
higher than 5% is below 0.32%, from the total of 106 centres in the reconstruction
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Figure 8.35: Scaled percent diUerence between reconstructed and global velocity

mesh. In other words, the reconstructed space-time window Velds are in solid

agreement with the global simulation.

The evolution throughout the 75 time steps shows a relatively constant increase,
with a speed-up after 40 time iterations. This can be explained by the space-time
window capturing the internal Velds at a higher resolution level.

All things considered, the space-time window reconstruction based on sub-
modelling can not only be used to obtain the same Wow features as in the global
simulation, but it can also be used to reconstruct the internalVelds with acceptable
accuracy.

However, the main goal of this solution is not the reconstruction of the very
same Velds, but the Wexibility and freedom given to the user, to handle the Wow
features outside the global context, unhindered by the technology.

The direct comparison of the Velds, between the space-time window and the
global simulation, may provide a quantitative method for validating the reconstruc-
tion, but it is by far not the best choice. Reconstructing the Velds in continuum
mechanics may easily introduce phase shifts in both time and space. These can not
be dealt with solely in a quantitative manner. The space-time window is basically a
new, independent simulation, based on the global version, and requires hydraulic
revalidation, just like the global simulation does.

Laser measurements can provide a reference frame, for both the global simulation
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Figure 8.36: Number of points with diUerence ≥ 5 %

and the space-time window, in order to better control and monitor the possible
spatial and temporal shifts. However such and approach is beyond the purpose of a
computer science thesis. Therefore, it can be concluded that the space-time window

reconstruction based on submodelling is a robust solution for alleviating the data
deluge problem, but has powerful and promising features for empowering the CFD
user with freedom and Wexibility.

This chapter has been designed to push the approach based on submodelling
to practical complexity levels. Even though the tool that has been developed plays
the role of a software ‘booth’, the results are promising and founded on solid
ground. The next section continues by drawing the main conclusions around the
implementation, and the two test-cases that were chosen.

8.4 Concluding remarks

Not all supercomputing applications are simulations, and not all simulations are
numerical simulations. However, most of the applications in CSE involve numerical
simulations, and a large part of the global computational resources is allocated to
the CFD community.

As already mentioned, the data reduction is just a side eUect for the submod-
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elling approach. The strength of the space-time window reconstruction based on
submodelling relies in the freedom and Wexibility given to the user. The user is
now able to create independent high-resolution simulations on cheap commodity
hardware, based on large-scale supercomputer versions. Several degrees of freedom
are given foundations: the abilities to independently change the dynamics model,
change the mesh, add interaction with other test-cases, and to use microscopic
eUects at diUerent levels.

The author has learned, in a very tedious way, that it is possible to reconstruct
the Velds and the Wow features in the middle of a turbulent, real-world, unsteady
Wow, with the help of submodelling. This is a leap forward for the state of the art,
and lays down new foundations for the CFD community, spreading the seeds for a
shift in the way many numerical simulations are performed.

CFD numerical simulations have complex methodologies for receiving valida-
tions against experimental data. First, global Wow coeXcients must be computed
– for instance the Strouhal number, together with drag and lift coeXcients. After
these are conVrmed, a pressure signal can be used as a reference for triggering
laser velocity measurements. However, all this is by far hydraulic engineering,
and requires a certain level of expertise and background in the Veld, in order to be
performed; it is out of the scope of a computer science thesis. The software tool that
has been developed for this solution serves as a ‘booth’, showing solid results, and
requiring contributions from experts in hydraulics and applied mathematics.

Many aspects of the implementation can be improved. Besides that, several
modiVcations can make the life of an investigating engineer easier – such as the
reduction of the number of levels of interpolation to only one, which is still necessary
during the reconstruction phase.

Another modiVcation is related to the way space-time window data is conVgured
for the reconstruction, and requires the implementation of a new OpenFOAM
boundary class. The default one uses a large number of small Vles with temporal
data, and raises memory issues for a larger number of time steps. All this can be
alleviated through a new boundary class, capable of reading the space-time archive
directly, and reading the necessary values on the Wy.

It may be that normalisation of the vector Velds, in order to respect the mass
conservation ad literam, can help the numerics to swallow the input more easily. If
that is the case, a ‘self-healing’ capability of the new boundary class may come at
hand.

For the submodelling approach to be sound, Wux conservation should be ensured.
In Jasak [78] the author introduces a method for preserving the Wux conservation
during adaptive mesh reVnement. This is achieved by solving the pressure equation
again on the new mesh, and deducing the Wuxes. Due to the conservative boundary
conditions, the obtained Wuxes are also bound to be conservative. This is easily
achieved in a classic mesh reVnement context. However, submodelling implies that
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the new simulation has independent boundary conditions and is disconnected from
the global version. That is, solving the pressure equation will not guarantee that
the new internal Velds are going to be related to the global simulation.

Also, the procedure has to be repeated for each time step, during unsteady
simulations. There is no other way to ensure conservative Wuxes, because slight
deviations from the conservation laws are introduced during each time iteration. An
approach like that requires that the simulation is stopped and restarted during each
time step, with the present implementation. Also, it is important to remember that
solving the pressure equation again also enforces boundedness among the internal
Velds.

It may also be more practical, for the remote extraction of space-time win-
dows inside HPC facilities, to customise a probing class and dump the necessary
information at runtime, in parallel.

Time interpolation has been shown to be plausible, given that certain constraints
are satisVed. During an unsteady simulation, the space-time window boundary
patches constantly Wip their behaviour between inlet and outlet. Because of that,
for time interpolation to be possible, the phenomenon from any patch behaving as
an inlet for the window, at any moment within the space-time interval, must be
either constant or linear. If this condition holds true during the space-time window
interval, the approximation errors introduced by the interpolation of the boundary
conditions are negligible. If the constraint is not satisVed, time interpolation can not
be performed, and all the intermediary time steps must be processed for space-time
window information.

The problem of identifying a natural phenomenon which can verify the time
interpolation constraint, is a matter of physics, and is still subject to debate. For
now, time interpolation has only been proved in a specially crafted test case, with
a modiVed mesh to support the limitations, even though it produces unrealistic
phenomena. A Vner mesh captures turbulent behaviour at the inlets of the space-
time window, making time interpolation unsuccessful. Nevertheless, if it can be
applied in practical circumstances, time interpolation ampliVes all the beneVts that
are brought by the new, space-time window reconstruction concept.

The highest level of Wow complexity is reached during the ERCOFTAC bench-
mark. Direct comparisons between the global simulation and the space-time window
Velds is by far not the best way of validating the reconstruction, but even so it
proved that the two simulations are in solid agreement. A quantitative study re-
vealed that the average diUerence varies from nearby 0 to lower than 0.5%. Also,
the total number of cell centres with a diUerence of at least 5% is less than 0.32% out
of the 10

6
points.

These Vndings support the conclusion that space-time window reconstruction

based on submodelling is a functional solution, with promising results, and that
it can be further investigated and reVned together with experts from hydraulic
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engineering (mainly CFD), and applied mathematics.
Whenever Wexibility can be traded for perfectly accurate Veld reconstruction, the

author believes that the solution based on interprocessor traXc is more appropriate.
This method is demonstrated in the next chapter.
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9
Space-time window reconstruction in a

3D unsteady complex Wow based on
interprocessor traXc

This method is designed to reproduce the very same Woating point numbers
inside the space-time window, using a data storage with intercepted communications,
which are recorded during the global simulation run. The idea is engineered as a
reVnement of all the previous test cases, and is intended to validate the space-time

window reconstruction concept as a practical and robust way to deal with large
numerical simulation data. The implementation is a particular case in the concept,
where all the interpolation errors are removed, in order to obtain the very same Velds,
with the very same Woating point numbers. The price paid for robust accuracy is
given by the fact that the new, reconstructed simulation, although independent from
the global version in the High Performance Computing facility, does not provide
any more Wexibility than common submeshing techniques. However, this version
is ready to be applied on real-world, industrial simulations, with considerable
alleviations to the data deluge problem. The chapter is organised in a demonstrative
part, followed by the concluding remarks, as follows.

9.1 Proof of concept

The ERCOFTAC square cylinder benchmark is used, with a mesh of 402144 cells.
The case is well known in literature, and is described in Lyn and Rodi [120]. The
overall bounding box is given by (-0.4 -0.28 0) (0.96 0.28 0.392), in meters.

After 6 seconds of simulation, the mesh is reVned in the region of (0.22 0.06 0.03)
(0.29 0.13 0.35). The Velds from the originally unreVned simulation are mapped,
using linear interpolation, on the reVned case.

The mesh is then split in half, with one subdomain described by the bounding
box of (0.208 0.0525 0.01) (0.302 0.15 0.382), and one containing the remaining cells
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of the analysis domain. The Vrst subdomain, belonging to processor PE0, has 671510
cells and includes the reVnement region. The submesh of processor PE1 is kept
coarse, with 399064 cells, and contains the rest of the global analysis domain. For
now, this is regular mesh reVnement, with domain decomposition.

In order to intercept the communication between the parallel processing ele-
ments, the link channels between the processors are patched with recorders. In this
case, these are the processor patches.

Figure 9.1: The mesh for processor PE1

Fig.9.1 shows the mesh of processor PE1 with an internal window-like subdo-
main missing, since it is allocated to PE0.

In order to limit the number of communication patches between PE0 and PE1,
the mesh of processor PE0 is only reVned at kernel level, leaving the peel untouched
with 1762 communicating faces, and with direct mapping between the crusting cells
of PE0 and those of PE1. Each processor face of PE0 is simply shared with PE1.

Fig.9.2 shows the velocity contours for PE1, and Fig.9.3 shows the corresponding
velocity vectors. The Wow forms a Karman vortex street behind the square cylinder
obstacle. These kind of phenomena have been described in the previous chapter, and
are frequent in nature. Because of that, they are also important in the engineering
Velds, and have always been used for benchmarking numerical analysis software.

The region for processor PE0 can not be seen, being completely internal. It is
hidden by the visualisation software.

The original, unreVned simulation covers 10 seconds of analysis. The space-time
window is designed to reconstruct the exact internal Velds for one second, from t1 =
6 s to t1000 = 7 s, inside the subdomain of PE0. In order to capture the space-time
window, the reVned simulation is run from t1 to t1000 and the complete set of scalars,
vectors and tensors, which are communicated during the parallel execution between
the two processing elements, are stored in a dedicated archive.
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Figure 9.2: Velocity contours for PE1 at t1 = 6 s

Fig.9.4 displays the evolution of the PE0 data between t1 and t1000, outlining the
global context for better visualisation. The reconstructed data is shown in Fig.9.5.
Figs.9.4(a), 9.4(b) and 9.4(c) have a direct correspondence with Figs.9.5(a), 9.5(b) and
9.5(c).

The reconstructed data in PE0, which is based on the interception of interpro-
cessor traXc, is a bit-by-bit mapping with the original internal Velds from PE0
(after the reVnement). The solver and the simulation parameters have to remain
unchanged, otherwise the reconstruction can not be performed.

A constant time step of ∆t = 10−3 seconds has been used, to speed things up
on limited hardware resources. It is a little bit of a border value, with CFL reaching
the maximum limit.

Figure 9.3: Velocity vectors for PE1 at t1 = 6 s
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(a) t1 = 6 s

(b) t500 = 6.5 s

(c) t1000 = 7 s

Figure 9.4: Velocity vectors for processor PE0
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(a) t1 = 6 s

(b) t500 = 6.5 s

(c) t1000 = 7 s

Figure 9.5: Velocity vectors of the reconstructed Velds for processor PE0
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The intercepted interprocessor traXc registered 395154 Woating point numbers
travelling into each of the 1762 processor patches of PE0. On the other hand, a
single time step in the reVned PE0 region requires about 10.8 × 106

Woating point
numbers.

Accidental experiences with Woating point truncation have been performed.
Even the slightest modiVcations of the interprocessor data can render the process
not functional, resulting in divergent solutions or a diUerent number of convergence
iterations, which can not be extrapolated using the intercepted traXc.

The problem with this procedure is that it does not provide any more freedom to
the user than standard submeshing approaches. However, it can provide substantial
reductions of the bottleneck problems.
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Figure 9.6: 64-bit Floating Point Numbers during the interprocessor transfer

Fig.9.6 shows the amount of Woating point numbers that have been transferred
during the simulation of the space-time window period. For the complete second,
the average number of 64-bit values is about 700000 per time step.

During the Vrst three time iterations, there is a burst of Woating point numbers,
which gradually decreases to the normal regime. This is contributed by the initial
start-up of the parallel numerical implementation.

The pattern of variations is pretty much regular, and it is inWicted by the
convergence rates, from within each of the individual time steps.
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Figure 9.7: Compression Ratio vs Time Step Storage

Fig.9.7 shows the relationship between the compression ratio and the number of
time steps that get stored on the disk, from the global simulation.

The compression ratio CR is deVned by (9.1), where Ftraffic is the number of
Woating points counted in the traXc, and Fsubdomain is the number of Woating points
that are necessary for storing the Velds in the reVned PE0 subdomain.

CR =
Ftraffic

Fsubdomain

× 100
✞

✝

☎

✆9.1

If less than 6.5% of the time steps need to be stored to disk, from the total of
1000 in the space-time window, then the compression ratio is higher than 100%.
This literally means that the intercepted traXc overwhelms the number of Woating
point entries which are required to store the Velds in the PE0 subdomain in the Vrst
place. But when the number of stored time steps exceeds 6.5%, the compression ratio
becomes practical, being smaller than 100%. The plot reminds of an exponential
function with a negative exponent.

Fig.9.8 shows the practical region of the compression ratio, on a more appropriate
scale. It can be seen that when more than 12.8% of the time steps are required on
disk, the compression ratio drops below 50%, increasing the space savings (1 - CR).

Therefore, the space-time window reconstruction based on interprocessor traXc,
pays oU to be a solid solution to the data deluge problem, with guaranteed, controlled

115



CHAPTER 9. SPACE-TIME WINDOW RECONSTRUCTION WITH

INTERCEPTED INTERPROCESSOR TRAFFIC

 10

 20

 30

 40

 50

 60

 70

 80

 90

6.5 20 30 40 50 60 70 80 90 100

C
om

pr
es

si
on

 r
at

io
 (

%
)

Number of stored time steps (%)

Space savings growth (1 - CR)

CR (%)

Figure 9.8: Practical Compression Ratio

reconstruction of the internal Velds, and which can be directly applied in the
industry.

Obviously, the entire concept can not be applied unless the user is capable of
deVning regions of interest, in both time and space, inside the global simulation.
Also, for this approach to work, it is mandatory that the regions of interest require
local mesh reVnement. If these two criteria are met, then the space-time window

reconstruction based on interprocessor traXc can be successfully applied.
In order to restart the simulation, one needs to begin with known initial Velds,

either from a previous time step containing the necessary Veld values inside the
space-time window subdomain, either from global initial conditions.

There are two key factors that control the performance of the solution, in terms
of compression ratio:

• the compression ratio increases with the number of stored original time steps
inside the subdomain

• the compression ratio decreases with ∆t (smaller time steps produce more
interprocessor traXc)

The interprocessor traXc is also aUected by the numerical algorithm, and by
the number of processor patches that are used for communication. The fewer the
communication channels, the better the compression ratio.

116



9.2. CONCLUDING REMARKS

It is important that the variations inWicted by the individual convergence rates,
during each time step, remain relatively constant and predictable through the space-
time interval. Otherwise, an uncertainty factor is introduced, and the amount of
interprocessor traXc can be harder to predict, when deciding to apply this space-time

window reconstruction solution ‘in the wild’.
The concluding remarks discuss the beneVts and trade-oUs that need to be

considered before using this implementation.

9.2 Concluding remarks

The previous chapters were searching for a method to free the user from the
supercomputer facilities and from the data bottlenecks, which limit both the way
and the place where scientists can make use of large scale numerical data.

This chapter demonstrates a solution, proven reliable, which has a strict focus
on lossless data reduction. The very same Woating point bits are obtained, but based
on less information. The solution uses intercepted interprocessor communications
to reconstruct a space-time window, given that such a region can be identiVed in
the global simulation, and that it requires local mesh reVnement.

The method can be used as a remote reVnement technique which is applied on
a subdomain in both time and space. If used properly, according to the blueprints
demonstrated in this chapter, the method drastically reduces the data bottlenecks,
and practically removes the data deluge problem.

However, it is important to notice that certain criteria have to be met. The
compression ratio highly depends on the size of the ∆t time step and the number
and size of the time steps in the extracted subdomain, that require disk storage.
If used improperly, the interprocessor traXc may well overwhelm the size of the
original data, making the procedure impractical; large eddy simulation (LES) usually
require smaller time steps, around 10−8–10−6 or worse. The smaller the time step,
the more traXc that needs to be generated between processing elements.

Another important factor is the numerical algorithm in place, used by the solver.
To be more speciVc, the convergence rate of the algorithm is very important. The
sooner it reaches an acceptable solution, the better for the traXc size. Each additional
iteration inside the individual time steps creates new Woating point exchanges.

The intercepted traXc data needs to be stored by starting with a time step in the
global simulation where the internal Velds are known. This can either be from the
initial, global conditions, or a certain moment in time when the space-time window
region starts being of interest.

The number of communication patches between the space-time window pro-
cessor and the rest of the computational universe, must be reduced to as few as
possible. The convergence of the numerical algorithm is also important, because if
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the blueprints in this chapter are to be used on industrial applications, the variations
in the convergence rates must remain relatively constant, and predictable through-
out the interesting time interval. Otherwise, the amount of interprocessor traXc
may be harder to predict, and thus making the compression ratio much harder to
estimate and control.

There are also cases where the method is not applicable, like when data reVne-
ment in the interesting space-time region is unnecessary. Also, it may be that the
necessary reVnement is not dense enough to allow the method to pay oU. The
best compression ratio is achieved when the local reVnement has to be orders of
magnitude higher than the coarseness of the ‘external’ mesh. This is driven by the
physics, and the user must create prospects, according to the given blueprints, before
applying the procedure.

The current implementation is based on modiVed processor patch classes. The
Woating point numbers are dumped in text format, and they have to be converted
for compact 64-bit representation. To avoid truncation errors, the precision of the
output format must be set to the maximum.

When the data is read, a diUerent, modiVed version of the processor patch is
used. It is important to observe that even the slightest truncation errors, of 10−300,
can ruin the reconstruction. Therefore, if any compression is further applied on the
traXc data, it has to be lossless.

The number of processing elements that are used during the manual domain
decomposition is not important. The more processors it has to communicate with,
the less data the space-time window will exchange to each one of them. However
for simplicity reasons, it is recommended that only two subdomains are used during
the traXc interception procedure. It may even be very hard to de Vne a space-time
window in the global subdomain, using manual decomposition, among another n
processing elements. The weight of the computational workloads should preferably
be well balanced (although this is not a requirement).

On the other hand, more complex implementations should also be able to de-
scribe a space-time window as an entity consisting of multiple arbitrary subdomains,
so that the global simulation run can go unhindered, without changes in the domain
decomposition, and the necessary traXc is intercepted automatically. The resulting
traXc archive can then be used to convert itself to a simple two-processors scenario,
by binding the internal subdomains together.

In spite of a radically diUerent implementation, the interprocessor traXc based
solution is just a reVned validation of the previous test cases and of the ‘space-time

window reconstruction’ concept. All sources of interpolation inaccuracies from the
previous experiments are completely removed here. The nature of the processor
patches is not that of real boundary conditions, allowing the internal Velds to be
reconstructed in full precision. If and how these space-time window boundaries
based on the interprocessor traXc archive can be converted to a space-time window
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for solution A, based on submodelling, with unsteady boundaries, is still a matter of
research.

The Vnal chapter summarises the thesis and draws the concluding remarks,
outlining the main contributions, and presenting possible future research directions.
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‘If we wonder often, the gift

of knowledge will come’.

Arapaho tribe 10
Conclusions

10.1 Concluding remarks

The main concern of this study, is toVnd a solution for the bottlenecks that are
caused by the deluge of data, in the supercomputing community. To be more precise,
the research targets the numerical simulation community, and is concentrated
around a new, proposed concept, called ‘space-time window reconstruction’. The
results are summarised and thoroughly discussed in this chapter, followed by the
contributions and the perspectives for the future research directions.

The thesis begins by introducing the main motivation behind the research,
which is mainly that today’s supercomputers are orders of magnitude faster than
our data handling abilities. High Performance Computing (HPC) is compared with
a calash where horses have to travel long distances, but dramatically outrun the
storage. The specialised facilities are compared with giant aquaria where one can
build the most sophisticated submarine technology, but remains constrained to
the possibility of gazing at them through the windows. Therefore, the ‘space-time

window reconstruction’ concept is synthesized as an investigation area, and sets
forth the research objectives for the PhD program.

In Chapter 2, a new perspective for understanding computational science and
engineering is presented. The idea is founded on original and unconventional
approaches to the literature, including the data mining of ~6000 scientiVc articles
with clustering techniques. The results have been published in Anton [32] and
Anton and Crȩtu [28]. The most important professional societies and the hallmark
publications which stand for annual reviews and surveys in computer science, are
also remarked. They consist of powerful driving forces and watcher parties, capable
of developing and comprehending the vast Veld of computer science, and leading
the computing curricula around the world. The selected publications are useful for
identifying the challenges, the margins, and the evolving trends in the branches of
computer science.

The chapter is concluded by the proposal of a new perspective on High Per-
formance Computing and the computational sciences[32], with an emphasis on
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the links that bring the areas of interest from computer science at peering with
the necessary Velds of science, in order to forge the computing in science and
engineering (CiSE) community.

The next one is a thorough and comprehensive synthesis of the state of the art
methodologies, covering the solutions for dealing with large numerical simulation
data. DiUerent schools of thought are analysed and drilled down to their historical
roots, and the most important techniques, from computer science and applied

mathematics, are identiVed. The computational Wuid dynamics community is also
mentioned, with its ‘hands-on’ approaches for getting things done, within the
limitations of the current framework.

From computer science, specialised peer-2-peer storage systems, and scientiVc
Woating point compression are the methods selected as more appropriate for the job.
The Freeloader Project developed by Vazhkudai et al. [6] is a hallmark for distributed
peer-2-peer systems designed for large simulation data. However, its optimal use
is limited to local area networks, and it best Vts as a poor man’s storage system
with institute-level implementations. ScientiVc Woating point compression, on the
other hand, can be also used as an oYine solution, like it is in the implementation
of Burtscher and Ratanaworabhan [7]. However there is a compression ratio wall
that limits the eUectiveness of the method, and it is partly justiVed, because the
algorithm is generic, rather than optimised for numerical data.

The mathematicians have come up with methods like wavelet compression,
submodelling and partial matrix inversion. Wavelets are very good at extracting
the most relevant bits of information from a given signal, but they have very poor
performance on computational Wuid dynamics data. Therefore, they make more
sense to be applied when the unimportant part of the signal can be discarded.

The separation of a signal into important and unimportant bits is done by the
wavelet, not by the user. Such methods are useful for remote visualisation, as a form
of smarter multi-resolution techniques, but not for intelligent CFD post-processing
ant bit-level data reconstructions.

Submodelling is a technique one half of a century old, developed in the ’60s by
structural engineers, working in the aerospace industry. Submodelling, generally
speaking, has only been applied on linear phenomena, or at least on linear cut-
boundary regions. Most of the times the implementations are limited to steady-state
simulations. An essential critique against classic submodelling, is that it has only
been applied, where the physics of the studied phenomenon recommends the fact
that the local behaviour can be naturally disconnected from the global evolution.
Such a thing does not exist in the middle of a turbulent, unsteady Wow, frequently
happening in Wuid dynamics. This is called the St. Venant’s principle and it is well
explained in the chapter.

Partial matrix inversion covers a broader spectrum of methods, one of which
is substructuring. With partial matrix inversion only a half of the original system
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of equations needs to be calculated, the other part being related through a direct
pre-computed formula. These methods, no matter how optimised, can not be applied
on large systems of equations, such as those originating in Vne resolution LES
meshes.

None of the state of the art approaches seem to take into account that numer-
ical simulation data, no matter how large, is always being produced by a known
formula, within a known context. Generally speaking, all these approaches lack the
interdisciplinarity that is required to dive deep into the reality of the data deluge
problem, and so they only manage to scratch the surface of the issue without any
decisive eUect.

The ‘space-time window reconstruction’ concept in Chapter 4 cuts the Gordian
knot by drilling down to the root of the problem. The chapter proposes two diUerent
solutions for implementing the new concept. The Vrst one is based on submodelling,
and concentrates on the Wexibility of data post-processing and re-processing. The
second one concentrates on data reduction and provides lossless reconstruction of
the internal Velds, with bit-level accuracy. Basically,Solution B is a particular case
for Solution A, but with interpolation inaccuracies removed.

The Vrst solution has been disseminated with many occasions, like in Anton
[122], Anton and Crȩtu [123], Anton [130], Anton and Crȩtu [131]. The whole idea
is based on the observation that most of the times numerical simulations, including
the computational Wuid dynamics ones, require a large domain of analysis to be
calculated, in both time and space, when only a part of it provides the information
that is being sought for. For instance, the vortex shedding that is happening behind
the cylinder obstacle in the ERCOFTAC benchmark (Chapter 8), is symmetric
against the X-axis. This makes it unnecessary to retain or transport the mirror data,
since it can be obtained based on the other half of the simulation domain. Also,
the numerics require from 6 to 10 start-up seconds before beginning to produce
reliable data which can be contrasted with laser made measurements. This suggests
that an entire period in simulation time can be dumped, and that it should not be
transported or stored. Such examples bring up the idea that it is more practical to
select one or more user-deVned space-time regions in the global simulation domain.
These are called ‘space-time windows’. But there is a high probability that the mesh
in the user-deVned region has been customised and reVned, and with large eddy
simulation data the information in space and time that needs to be extracted is still
too big.

Therefore, the submodelling based solution tries to extract the minimal informa-
tion in that region and use the computational power available on end-user machines
to recalculate the internal Velds inside the space-time window. This means that
besides the initial conditions, the space-time window must retain the necessary
boundary information for each of the reconstructed time steps. All this data is stored
in a space-time ‘capsule’ format, and later serves as the basis for conVguring the
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reconstruction case. For now this is done by using the same solver, but diUerent
solvers can already be tested.

The problem with this solution is that the reconstructed Wow can be slightly
shifted in both time and space. The best way to control it is to use reference
data, preferably experimental, for calibration. Such data can be obtained with
laser equipment and pressure sensors. To best emphasise the user interest in the
space-time region, consider that traditionally, in most real-world applications with
turbomachinery, controllable data has only been known at the inlet (velocity, mostly
constant) and at the outlet (pressure). What happens inside the ‘black-box’ geometry
can only be ‘seen’ with the computer, through numerical analysis and visualisation,
and nowadays partly with modern equipment. Even when laboratory installations
permit it, the costs and the eUort are prohibitive. The submodelling based solution
brings unprecedented Wexibility to the CFD user.

The second solution is using interprocessor communications to reconstruct
the space-time window. When the numerical analysis reaches the point in time
where the space-time window begins, the domain is decomposed so that one of the
subdomains contains the region. For the method to be eXcient, the data inside the
kernel of the space-time window has to be reVned (if it is not already Vne enough),
so that the crust of the subdomain, consisting of processor boundary surfaces, is
much coarser. The decomposed simulation is continued with parallel execution, and
the traXc between the processor holding the space-time window and the rest of the
computational world (usually another processing element for the remaining of the
mesh) is intercepted and stored. The internal Velds inside the space-time window
are then reconstructed using the traXc archive and the same solver. This idea is in
fact a particular version of the Vrst, but one that can be implemented by removing
all the interpolation inaccuracies from the space-time data.

When dealing with petascale or larger amounts of numerical simulation data,
the simple extraction of the Velds in a space-time region can still mean too much
information to handle with present-day communications and storage technologies.
Also, considering that the space-time region is of high user interest, with large scale
simulations it is highly probable that the mesh inside it is going to be extremely
Vne. In this scenario, the ‘space-time window reconstruction’ concept is much
recommended. If the very same Velds need to be obtained without any post-
processing, the second solution can be used for optimal compression ratios. When
the data has been reconstructed on the user-side, the Vrst solution can still be used
for Wexibility (for instance, for changing the solver). Therefore, the concept proposed
in this chapter is a compact, single and robust stand-alone solution to the
numerical data deluge problem.

As a standard procedure, the author recommends that the user applies
the ‘space-time window reconstruction concept’ in two parts, as follows:
apply method B to bring the data on personal hardware, and method A for
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secondary post-processing of the data, after it has been reconstructed with
method B. This two-part procedure ensures that no matter what happens
with the information inside the data centre or within the supercomputer,
the important part of the simulation is always backed up and available
with bit-level accuracy.

Since the new concept is a bleeding edge idea in CFD, the research requires
a well-deVned strategy, with many levels of chariness. The research strategy is
condensed in Chapter 5.

The whole idea is split-up into problems of incremental diXculty. Like any
other engineering Veld, computational Wuid dynamics is an art of approximation.
According to Muntean [119], there are three major types of approximation in CFD:

1. Temporal approximation, where the ∆T time step range is selected, and
time-dependant variables and coeXcients are identiVed;

2. Spatial approximation, which deVnes the number of spatial variables used in
the model;

3. Dynamic approximation, where the equation terms which have a negligible
impact are removed, so that the computational resources are exploited to the
maximum;

At the Vrst level of complexity, a laminar, non-dimensional problem is used, for
a ‘proof of concept’. The non-dimensionality is given by the stream function, which
can be used to derive the velocity Velds in 2D. When a new road is opened and there
is no previous work on the subject, there always has to be ‘a Vrst’. Regardless of
how trivial it looks, ‘the Vrst’ always rises serious and unsuspected challenges and
may be harder to put down, therefore it is better to keep it as simple as possible and
verify if the idea can be done. This is the sole purpose of Chapter 6 where the ‘proof
of concept’ is explained.

The next level basically moves the problem from the Vnite element method (FEM)
to the Vnite volume method (FVM), and introduces more complex, rotationary Wows.
The FVM is more recent and frequently used in the CFD community; but the FVM
with cell-centred values brings up a serious problem: one can not deVne a cut-
boundary extraction region, in such a way as to remove interpolation completely.
This, on the other hand, is possible with the FEM, because the calculated values are
stored in the nodes of the mesh, not in the centre of the elemental volumes. There
is no workaround for this issue, but this is where the second solution serves as a
reVned validation of the concept (Chapter 9).

Due to the cell-centred FVM problem, from now on, throughout Chapters 7
and 8, a level of uncertainty is always present, and the physical laws, with the
conservation of mass, are used to monitor the quality of the interpolation. The
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problem at this level is bidimensional, but the OpenFOAM implementation claims
for cvasi-3D.

The ultimate level of complexity is reached in Chapter 8, where the CFD
approximation is limited to the dynamics of the system; and even in this case, a
large eddy simulation (LES) model is used, which is complex and computationally
intensive.

The research strategy also includes a backup plan. At any point in the roadmap,
a failure to obtain the ‘space-time window reconstruction’ would mean that the
submodelling based solution is not suitable for the goals of the investigation, and
that a new idea is necessary. If that was to happen, plan B would have meant to
limit the investigations to solution B, which is ‘safer’. Fortunately this was not
necessary, and the combined solutions of A and B provide a very solid remedy to
the numerical data deluge problem and a compact, powerful two-part procedure for
the HPC community. The solution in plan B is independently studied in Chapter 9,
as a reVned validation of the previous work.

Chapter 6 serves as the ‘proof of concept’ case, where the idea is demonstrated
for the Vrst time, using a trivial computational Wuid dynamics (CFD) problem. The
implementation is completely based on the Vnite element method and the PETSc
Toolkit developed by Balay et al. [26]. The test-case is from Resiga et al. [109]. The
Vrst and most important thing that is learned during this stage, is that the ‘space-
time window reconstruction’ concept, although merely only a spatial reconstruction
at this time, is possible, and that it can be applied to CFD. The author discovers the
classic submodelling method from structural engineering much later, in Chapter 8,
after all the complexities have been tackled with.

Another important step is the study of how interpolation algorithms can aUect
the accuracy of the reconstruction. The tests are performed with the help of the GSL
library[126]. The conclusion is that linear interpolation is good enough, and based
on that, linear interpolation is used throughout the remaining of the thesis, and in
all the experimental scenarios. Last but not least, without prior knowledge of the
classic submodelling method from structural analysis, the author experiments with
diUerent mesh resolutions, understanding that the problem of ‘space-time window

reconstruction’ is more than just a problem of data extraction, data reduction and
reconstruction.

Chapter 7 bears the fruits of joining an open source CFD community, and is
mainly focused on the implementation issues that have to be resolved before teasing
the tough problems in OpenFOAM. The test-case also proves that the boundary
extraction method can handle rotationary phenomena, where vortices are forcing
the Wow to get back into the reconstructed area.

Chapter 8 reaches the highest level of complexity, in terms of the modelled
phenomenon. Most importantly, this is where turbulence and physical time are
introduced. The chapter is organised in three sections and two major test-cases.
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The Vrst section deals with the implementation of the submodelling based solution,
which is now solely based on the OpenFOAM toolkit and original software.

The Vrst test-case is specially crafted for time interpolation. The importance of
time interpolation for the ‘space-time window reconstruction’ concept is major. Any
time step that can be interpolated does not require storage, and therefore can be
removed from the space-time archive. However, the mesh of this specially crafted
test case has been altered such that it does not capture real, natural phenomena. The
diesel-injection cavity problem is used to see if time interpolation is possible at all,
and if successful, to understand the constraints that need to be taken into account.

The Vrst observation is that in an unsteady simulation of turbulent phenomena,
the boundary patches around the space-time window exhibit inlet-outlet Wipping
behaviour, during each time step. This can mean tens of thousands of times per
second, or much more. The problem with turbulence is that whenever nonlinear
phenomena happens around the cut-boundary region of the space-time window, any
single inlet can prevent time interpolation from being possible. Time interpolation
is shown to be possible as long as the nonlinear phenomena are constrained, during
each time step, at the boundary patches which manifest outlet behaviour.

Finding a natural phenomenon which is suitable for ‘space-time window re-

construction’ with time interpolation, is a problem of physics, and is still a matter
of debate. It may very hard to Vnd a natural scenario for this one. On the other
hand, time interpolation ampliVes all of the beneVts that occur when applying the
‘space-time window reconstruction’ concept which is based on submodelling – in
this case, 99% of the time steps do not require storage in the space-time window. The
time interpolation can be performed, as long as the phenomena at the cut-boundary

region of the space-time window displays constant or linear evolution through time

for each of the boundary patches which behave as inlets. Such a case is demonstrated
with a specially crafted mesh. However, a mesh which captures the natural phe-
nomenon correctly produces turbulences at the main inlet zone in the cut-boundary
region of the space-time window, and this makes the time interpolation attempts
unsuccessful.

The ERCOFTAC square cylinder benchmark is well known in literature – see
Lyn and Rodi [120] – and it is widely used for the validation of numerical software.
The turbulent Wow over a cylinder produces a Karman vortex street, with vortex
shedding behind the cylindrical obstacle.

In nature, Karman vortex streets are frequent. Even if invisible to the human eye,
they can form when the wind crosses over the electricity lines, producing vibrations
and sometimes a whistling sound. They also form in the sky around high-altitude
mountain peaks or in the ocean, around the islands that are blocking the Wow of
the ocean streams. A frequent encounter is around industrial chimneys, where
they induce structural stress and can provoke disasters. In order to attenuate the
structural stress, spiral ridges are attached around the chimneys. Square cylinders
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are building blocks for many engineering applications, under water, in the sky or in
other Wuids, therefore the studied phenomenon is of real practical interest.

The ‘space-time window reconstruction concept’ is used to reconstruct a space-
time window containing the Wow right behind the square cylinder. The vortex
formations are emphasised with the help of pressure isosurfaces. The same Wow
features are reconstructed successfully. Global and reconstructed streamlines are
also compared from diUerent angles, to prove that the same Wow features are
preserved. However, for a more convincing comparison, the velocity Velds are
compared head-to-head.

A direct comparison of the Veld values between two independent simulations is
not the best choice, because the Velds can be shifted in both time and space, leading
to erroneous conclusions. However, in this case, the comparison brought up solid
proofs that the very same data is obtained, in spite of the diUerent mesh resolutions
and the possible zoom-in eUects. The quantitative study revealed that the average
diUerence varies between nearby 0 to lower than 0.5%. Also, the total number of
cell centres with a diUerence of minimum 5% is less than 0.32% out of the 106 points.
The results are well explained in Chapter 8.

The Vnal test-case, in Chapter 9, is an attempt to reconstruct the very same Woat-
ing point numbers, with the very same bits, by using manual domain decomposition
to describe the space-time window, and by intercepting the interprocessor traXc,
for storage. The Velds are then correctly reconstructed using the traXc archive,
which, when used properly, can reduce the data throughput to very low levels. For
instance, if at least 12.8% of the time steps within the space-time window region
are normally required to be stored on disk, the achieved compression ratio starts
dropping below 50%, which allows for impressive space savings. The key point is to
reVne the kernel of the space-time window as much as possible, while maintaining
the communication peel untouched, and as coarse as it can be kept.

The ‘space-time window reconstruction’ concept is based on the fact that, in
regular numerical simulations, and especially in computational Wuid dynamics, only
a subpart of the global analysis domain, in both time and space, contains useful
and targeted information. The author demonstrates the concept in test-cases with
gradual complexity levels, starting from ground zero, and Vnally ending up by
laying down the foundations for a new style of producing numerical simulations –
with immediate applications in CFD.

Fig.10.1 shows the evolution for the individual processing power of the pro-
cessors used in the Top500[12]. It is based on unoXcially collected system data.
As shown in Chapter 2, the dominant architecture in the Top500 is the cluster,
covering more than 80% of the systems. Considering that most of the clusters are
made up of computer systems based on regular microprocessors, this implies that
similar, or the very same models of microprocessors are available for the end-user
hardware. Therefore, the computational power of the hardware which is available
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Figure 10.1: Performance of Individual Processors in the Top500

to the end-user has been increasing at an exponential rate.
Nowadays, this computational power can also be accelerated with aUordable

GPGPU and FPGA hardware. With such an increase in the end-user’s ability to
perform numerical computations on personal hardware, the rationale is to enable
the ‘space-time window’ concept to exploit it, and trade-oU personal computational
resources for much better space savings and Wexibility. In the present research, in
the most complex test cases of Chapter 8 and 9 (mainly the ERCOFTAC square
cylinder simulation), the reconstruction of the space-time window requires 40-60
seconds of computation per time step, depending on the mesh resolution, which
varies from very coarse to very Vne meshes with millions of cells. The commodity
machine that was used is a Q6600 quad-core running at 2.5 Ghz, and capable of 24
GFLOPS according to the Top500 benchmark, developed by Dongarra et al. [50].

The results in data reduction are remarkable, and surpass the existing state of
the art techniques by having smaller data sets. However, the proposed methods are
not so generic and can only be useful when certain conditions are met, while others,
like Woating point compression, can be applied regardless of these limitations.

One of the main diXculties is to have a well-posed mathematical problem. For
instance, during the reconstruction process, after each new time step is enforced
with boundary conditions, the velocity Velds need to be normalised against the
interpolation error, such that mass conservation is imposed by artiVcial, iterative
adjustments.

After the Velds are normalised, the Wuxes need to be recalculated using the pres-
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sure equation, as described in Jasak [78]. The author has developed this procedure,
but it is not enough. It has to be applied during each new time step, before the
actual calculations begin. This makes the process tedious and slower, and future
investigations need to be performed. The tests show that even if the Wuxes are
conservative and recalculated during each time iteration, the process modiVes the
internal Velds, most notably the pressure. So even if one gets perfectly posed prob-
lems, it is still a matter of research to see how the side eUects are going to inWuence
the reconstructed Wow features, which are basically made out of a new simulation.
For now, the reconstruction is performed without these options.

The procedure of [78] is also good for rebinding the equations together. The
impossibility of Wawless interpolation forces the tiny changes that are monitored
through the conservation of mass criterion, to break the boundedness of the system.
If not Vxed, this can hang or crash the implementation in the future, for a large
number of reconstructed time steps, or produce divergent solutions.

The next thing to take into account, is that based on the current implementation,
the simulation of the reconstruction would need to be started, stopped, corrected
and restarted during each time iteration. This is especially diXcult while the ∆t
time step can be very, very small (10−8).

A small ∆t means that unless time interpolation can be used, more data needs
to be sampled into the space-time window. For solution B, smaller time steps mean
more traXc and larger traXc archives. The large eddy simulation (LES) solver that
is used normally requires 10−8–10−4 time steps, but smaller values are possible.

Another thing to consider is what to expect from a ‘space-time window recon-

struction’. If the second method is applied, the very same Veld values are guaranteed
to be obtained every time, as long as the simulation conditions are not changed.
This means that the very same mesh, with the same solver and the very same solver
parameters need to be applied. That includes the domain decomposition during the
interception of space-time window traXc.

For the Vrst method, based on submodelling, the validation process is more
tedious. Besides a Wow feature validation and quantitative comparisons which can
be obtained in computer science, in hydraulic engineering, and more importantly in
computational Wuid dynamics (CFD), validations are much harder to obtain. For
instance, the real time in the simulation is irrelevant, unless it is correlated with a
speciVc signal from the experimental data, like a pressure threshold. In Lyn and
Rodi [120] the variation of the pressure Veld right behind the cylinder is measured
with a pressure transducer. The shedding of the streamlines is detected by a spike
in the pressure amplitude, which triggers the beginning of phase 1. There is no
correlation with physical time, but velocity measurements are averaged according
to the phase of the sinusoidal signal, which is formed by the Wuctuations of the
pressure probe.

The numerics need some ‘time’ to produce stable results. For the square cylinder
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test case, 6 seconds of the simulation time are used to stabilise the solver. If one
would want to compare the simulation with experimental data, the Vrst 6 seconds
can be simply discarded; next, some global hydraulic coeXcients need to be veriVed.
The simulated phenomenon can also be shifted in space, which means that Wow
regions too close to the space-time window boundaries are bogus and should not be
used. Again, this explains why CFD users frequently have to analyse much larger
analysis domains, with longer time intervals, to Vnally obtain a valid, smaller region
of interest, that can be isolated in time and space. Only after the global coeXcients
are conVrmed, the validation goes on with more advanced measurements, like
averaged velocity data sampled on the unit vectors. If one has to Vt the Velds
obtained by numerical simulation with data from experimental measurements, the
time used in the numerical simulation needs to be synchronised with the phase
bins, in a similar way the experimental measurements are triggered. Simply doing
that for large-scale data, like in LES, can be a nightmare. The more time steps
are subsampled, the worse the nightmare gets. Missing time steps in the global
simulation have to be recalculated (on a very Vne mesh), until one of them can be
identiVed as belonging to the beginning of phase 1. They usually also eat up a lot of
storage space.

To conclude the submodelling based ‘space-time window reconstruction’ is, in
fact, a brand new simulation, with new boundary conditions, and the reconstructed
phenomenon can be shifted in time and space; so it takes a CFD expert to analyse
this problem and Vnd a hydraulic relationship, when possible, between the global
Veld values and the reconstructed version.

Small time steps also mean trouble for the second solution, which is based on
the interprocessor traXc. The more time steps that need to be calculated in the
global simulation inside the time interval of the space-time window, the more data
that needs to be intercepted and archived on the disk.

All things being said, the ‘space-time window reconstruction’ concept is com-
patible with the main state of the art approaches, and can be used, at any time,
combined with methods like scientiVc Woating point compression[7] and peer-2-peer
specialised Vlesystems[6].

The next section summarises the main contributions of the thesis, taking into
account that this is an approach which focuses on computer science, with practical
and applied solutions.

10.2 Contributions

According to Allen Newell[134], ACM Turing Award winner, computer science
PhD theses must have at least one of the characteristics listed in Table 10.1 – see
Kung [10].
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• Opens up new area
◦ Provides unifying framework
◦ Resolves long-standing question
• Thoroughly explores an area

◦ Contradicts existing knowledge
◦ Experimentally validates theory
◦ Produces an ambitious system
◦ Provides empirical data
◦ Derives superior algorithms
• Develops new methodology

• Develops a new tool

◦ Produces a negative result

Table 10.1: Characteristics of a PhD Thesis in Computer Science – from Allen
Newell, published in Kung [10]

This thesis has fulVlled four requirements, as shown in Table 10.1. The most
deVnitive contribution is the opening of a new area. Basically, in this thesis the
author lays down the foundations for a paradigm shift in the way large numerical
simulations are handled. This is done by introducing the new, ‘space-time window

reconstruction’ concept, which has been demonstrated and validated at gradual
levels of complexity.

In order to demonstrate the new concept, the author develops new methodologies

and also develops new tools, which have been shown to produce reliable results.
The foundations for the new space-time window reconstruction concept are

moulded on an extensive study covering diUerent schools of thought. The author
thoroughly explores the area of large numerical simulation data handling, surveying
a large spectrum of approaches that have attempted to, or could have been used
for, dealing with supercomputing data bottlenecks. The best solutions from three
main borderline Velds are examined: computer science, applied mathematics and
computational Wuid dynamics.

The ‘space time window reconstruction’ concept can be used to alleviate the
deluge of numerical information to what is minimal, essential data. The main focus
has been concentrated on the data size problem, being mainly a computer science
challenge.

The author provides two fully working solutions for implementing the ‘space-
time window reconstruction’ concept, both adjusted to diUerent user needs, and
both resolving the bottlenecks that appear during large scale data handling in High
Performance Computing.

It has recently become more and more clear that a radical change in the way
we manage very large scale numerical simulations is necessary. It has also become
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clear that the beating of more horse power out of the bleeding edge supercomputers
hits the data wall before the start of the race. This thesis is an echo of the problem,
digging and opening up very deep mines, at the frontier of multiple scientiVc Velds.
The new concept could have been approached by experts from applied mathematics,
computational Wuid dynamics, or any other computational science and engineering,
frontier Veld.

Researchers from other, related Velds of study, can use the ‘booth’ that has been
introduced and validated in this thesis, in order to help shape the new paradigm for
the future.

Computers have become the third pillar of scientiVc progress, along with the-
oretical investigations and experiments. Therefore, the proposed solutions are
engineering the foundation stone for a new way of doing science.

The main research has been centred around the problem of numerical data
deluge, which creates bottlenecks for the supercomputing communities. In short,
this research has been engineered from the beginning as an attempt to cut the
Gordian knot of the problem. The roadmap is explained in Chapter 5. The great
bet in this concentrated eUort has been to break the ice and open up new roads,
then show that they can lead to a radical paradigm shift, in the way large numerical
simulation results are handled, bringing serious beneVts and resolutions of the data
bottlenecks. This is only possible when sailing in uncharted territories, exploring
frontiers that have never been challenged before. Therefore, the results in this thesis
are of high impact and great potential for computational science and engineering.

The new concept is called ‘space-time window reconstruction’, and creates a
paradigm shift in numerical simulations. It has never been attempted in computa-
tional Wuid dynamics before, and involves much more complex phenomena than
what classic submodelling, from structural engineering, has been designed for. A
summary of the primary contributions introduced through the‘space-time window

reconstruction’ concept is listed below:

• a standard two-part procedure for removing the deluge of numerical
data through the ‘space-time window reconstruction’ concept:

– the author recommends that the user applies the ‘space-time
window reconstruction concept’ in two parts, as follows: apply
method B to bring the data on personal hardware, and method
A for secondary post-processing of the data, after it has been
reconstructed with method B;

– this two-part procedure ensures that no matter what happens
with the information inside the data centre or within the super-
computer, the important part of the simulation is always backed
up, portable, and available with bit-level accuracy;
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• a robust method for reducing storage requirements:

– the data deluge problem is practically solved, due to the fact that the
user can now focus on the essential parts of the simulation – see Anton
[130], and Anton and Crȩtu [131];

– the data bottlenecks are alleviated at all levels, since only a fraction
from the global information is necessary for the reconstruction of the
space-time window;

– less data needs to be transported;

• a real solution for alleviating the data bottlenecks:

– client level, by reducing the amount of data which has to be transported
over the Internet;

– gateway level, by consuming only a fraction of the available bandwidth
which connects it with the data centre;

– High Performance Computing facility level, by relieving the computing
nodes from the internal network of the burdening transfers that normally
converge in one exit point, during the oYoading procedures;

– the methods in the state of the art concentrate on peer-to-peer technolo-
gies, which do not reduce the data, Woating point compression, which is
too generic and limited in terms of compression ratio, and data reduc-
tion techniques which either do not focus on preserving the useful bits
from the simulation, either remove the Veld information along the way
replacing it with prefabricated, post-processed data – see Anton [122],
and Anton and Crȩtu [123];

• implementations which adapt to practical user needs, and solve real problems:

– solution A empowers the user with freedom and Wexibility, such as
when the space-time window is used for deeper investigations;

– solution B can reproduce the internal Velds in the space-time window
by recalculation, with bit level accuracy;

– solutions A and B can be combined;

• a method for assuring complete data mobility for ultra-scale numerical simu-
lations:

– stuXng the essential bits of useful information through the eye of a
space-time window, after being remotely extracted from a large-scale
simulation, enables the user to store and transport that information with
ease;
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– the space-time window data can Vnd room on any commodity technol-
ogy available to the end-user: microSD cards, USB sticks and gadgets,
mobile phones and netbooks;

• a method which frees the user from depending on expensive and/or scarce
hardware:

– the hardware used in High Performance Computing facilities is spe-
cialised and expensive, for both the computational purposes and for
storage, bounding the user to it whenever large-scale numerical simula-
tions are performed;

– the space-time window can be reconstructed using aUordable acceler-
ation techniques, like General-Purpose computation on the Graphics
Processing Unit and Veld-programmable gate array boards – Anton
[130];

• a new method for performing zoom-in and zoom-out eUects in the middle of
real-world, complex computational Wuid dynamics simulations:

– the method can be used as a virtual periscope which can be harnessed
to move around and study the data in the global simulation at diUerent
resolution levels, even while being outside of it – Anton [122];

• an implementation which brings Wexibility and independence in how the
results are post-processed and re-processed:

– the user can change the dynamics model inside the space-time window
if a diUerent one is more appropriate, as long as the necessary Velds are
available;

– the mesh inside the space-time window can be reVned and modiVed in
any way – Anton and Crȩtu [123];

– a diUerent numerical solver can be used, even for the same mathematical
model;

– other space-time windows can be recursively deVned inside the Vrst one,
if it may reveal useful information about the physics;

– the space-time window can be used as input or in relation with other
numerical simulations, like, for instance, in the case of Wuid-structure
interactions;

• a solution with a broad spectrum of immediate applications in electrotechnics,
physics, magnetohydrodynamics, and virtually any numerical Veld of science:
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– the space-time window reconstruction concept can be applied in any Veld
of science or engineering which requires numerical analysis, whenever
the physics of the simulated phenomenon recommends that a space-time
region can be identiVed in the global simulation;

– the tools that have been developed can be used to apply the space-time

window reconstruction concept in any of the scientiVc Velds that can be
approached with the OpenFOAM toolkit[27], either for direct and robust
data reduction, either for customising the solution for the peculiarities
of the physics;

• a ‘software booth’ for investigating the new paradigm with experts from other
Velds, like hydraulic engineering and applied mathematics:

– the software and methodology that have been developed, just like the
‘Egg of Columbus’, enable the hard work to be fulVlled (i.e. ‘cooked’)
with interdisciplinary research, that also involves experts from other
scientiVc and engineering domains;

• a method and software tool for submodelling within unsteady turbulent Wows:

– unlike classic submodelling which is regularly used in structural engi-
neering with linear phenomena around the cut-boundary regions, and is
seldom used with unsteady processes like material melting, the current
method and implementation can be used in the middle of unsteady
turbulent and rotationary Wows, capturing a volume of Wuid in the
space-time window – see Anton [130], and Anton and Crȩtu [131];

• an alternative to compression:

– the ‘space-time window reconstruction’ concept can be used as an al-
ternative to compression, with a direct purpose of better compression
ratios when the solution based on interprocessor traXc can be used;

– if obtaining the very same bits for the internal Velds is not among
the purposes, the method based on submodelling can also be used for
compression as demonstrated in Anton [122]

• a method for in-situ processing and local post-processing:

– the introduced concept is designed to allow for the extraction of the
space-time window on a remote basis, and enable the internal Velds to
be independently recalculated on local, commodity hardware;
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• a solution to allow for local changes in the modelled phenomena to be intro-
duced independently:

– using the implementation based on submodelling, the user can describe
moving meshes, mesh deformations, or simply add new elements inside
the space-time window, like new or fewer obstacles;

• a solution for fast exchange of simulation results (via Internet, personal
storage devices, etc):

– researchers in scientiVc and engineering Velds can now make use of
the space-time window reconstruction concept in order to decouple and
exchange numerical information, which could not have been possible
before;

• a method for fast and focused post-processing:

– the tools that are developed allow the user to quickly jump and focus
in the interesting space-time regions of the simulation domain, without
having the process all the information (remotely or by downloading it) –
see Anton and Crȩtu [123], and Anton [122];

– the user can now capture and manipulate the essential physical processes,
like for instance vortex shedding;

• a method for estimating the Vnite volume interpolation errors, based on the
preservation of conservation laws:

– for the ‘space-time window reconstruction’ concept based on submod-
elling, the accuracy of the interpolation, during each time step, is veriVed
using the physical laws of nature, and mainly through the conservation
of mass in the space-time window region – see Anton [130] and Anton
and Crȩtu [131];

Other contributions from this thesis:

• a thorough and profound exploration of the state of the art in dealing with
large numerical simulation data:

– the study covers a very broad spectrum of ideas, diving into independent
and diUerent schools of thought, in order to Vnd the best methods for
dealing with large numerical simulation data;

– from the computer science school, the author identiVes Woating point
compression[7] and specialised peer-to-peer distributed systems as out-
standing but insuXcient solutions[6]
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– from the applied mathematics school, the research covers wavelet com-
pression, partial matrix inversion and classic submodelling techniques,
with pros and cons;

– the computational Wuid dynamics school is mined for smart workarounds
in data handling, like in-situ post-processing and visualisation;

• an original introduction to ‘High Performance Computing’ and ‘Computa-
tional Science and Engineering’:

– the author uses unconventional methods for developing a well formed
vision over the evolution of supercomputing, with prospects for the
future trends and applications – see Anton and Crȩtu [28], and Anton
[32];

– using statistical, economical, historical and political data, the thesis
presents an in-depth study of supercomputing and the future develop-
ments in Europe – details published in Anton [21];

– the emergent, young Veld of CiSE is described with an original perspec-
tive over the Velds of study that are implied – Anton [32];

Many of these results have been published or are being prepared for journal sub-
mission. A broader list of publications, covering the aforementioned contributions,
is presented in the appendix of the thesis.

The space-time window concept has been engineered for long term development
and polishing, as a new style in High Performance Computing. It is also a leap
forward for the state of the art methods, and improves the research abilities in
hydraulic turbomachinery, and green energy installations. Some of the future
research directions are presented in the Vnal section.

10.3 Future research directions

The method has a lot of potential for the future. For instance, feature tracking can
be implemented such that the space-time window follows the vortices it reconstructs
across the global domain of analysis. The same procedure could be applied for
tracking air bubbles during the simulation of laser surgeries.

As a way to improve performance and regulate the reconstruction process,
multiple space-time windows can be deVned over the same spatial domain, but with
adjacent time intervals.

The interpolation used during the extraction of the space-time window can be
highly improved, using intelligent sampling positions that follow the information
density inside the global data.
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In order to normalise the boundary conditions, a self-healing method should be
implemented as a stand-alone boundary condition which is capable of auto-adjusting
the values during each time iteration.

Real-time extraction mechanisms can be developed based on the probe class,
that are capable of dumping out the space-time window directly from a parallel
numerical simulation at runtime.

For the extraction process, the interpolation could be improved by replacing the
standard cubic grid with a cloud of coordinates which contain cell centres from the
global mesh. This can reduce the number of interpolation levels to only one.

In spite of the OpenFOAM [27] implementation and design, it is necessary to
study the space-time window reconstruction process when accelerated with GPGPU
devices. A key problem to be taken into account regarding this matter, is the lack
of error correcting codes (ECCs), in the commodity graphic cards’ Random Access
Memory (RAM).

As a reVnement, the energy losses inside the space-time window could be
veriVed, along with the conservation of mass.

For now Dirichlet boundary conditions have been used. Preliminary tests
show that mixed Dirichlet-Newmann conditions can be used when conVguring
the temporal behaviour of the boundary patches; however, further investigations
are necessary, in order to compare them with fully prescribed boundary values.
Also, with mixed boundary conditions, it is important to further investigate the
continuous Wip-Wop of the patch type, as the patches change behaviour from inlet to
outlet and vice versa.

The space-time window reconstruction concept should be veriVed in other Velds
of science, like magnetohydrodynamics or electrotechnics.

For further validation, laser measurements could be performed in the space-
time window region, in order to compare them against the results obtained by the
reconstruction, at diUerent levels of resolution.
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[94] V.-I. Crȩtu, Structuri de date şi algoritmi. Timişoara: Editura Orizonturi
Universitare, 2000, vol. 1.

[95] M. Burtscher and P. Ratanaworabhan, “pFPC: A parallel compressor
for Woating-point data,” in Proceedings of the 2009 Data Compression

Conference. Washington, DC, USA: IEEE Computer Society, 2009, pp. 43–52.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1545013.1545555

[96] K. Sano, K. Katahira, and S. Yamamoto, “Segment-parallel predictor for
FPGA-based hardware compressor and decompressor of Woating-point
data streams to enhance memory I/O bandwidth,” in Proceedings of the

2010 Data Compression Conference, ser. DCC ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 416–425. [Online]. Available:
http://dx.doi.org/10.1109/DCC.2010.44

[97] H. Tomari, M. Inaba, and K. Hiraki, “Compressing Woating-point number
stream for numerical applications,” in Proceedings of the 2010 First

149



REFERENCES

International Conference on Networking and Computing, ser. ICNC ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 112–119. [Online].
Available: http://dx.doi.org/10.1109/IC-NC.2010.24

[98] M. A. O’Neil and M. Burtscher, “Floating-point data compression at
75 Gb/s on a GPU,” in Proceedings of the Fourth Workshop on

General Purpose Processing on Graphics Processing Units, ser. GPGPU-4.
New York, NY, USA: ACM, 2011, pp. 7:1–7:7. [Online]. Available:
http://doi.acm.org/10.1145/1964179.1964189

[99] J. Bradley, C. Brislawn, and T. Hopper, “FBI wavelet/scalar quantization
standard for gray-scale Vngerprint image compression,” Proc. of SPIE on

Visual Information Processing II, vol. 1961, no. 1, pp. 293–304, April 1993.
[Online]. Available: http://dx.doi.org/doi/10.1117/12.150973

[100] K. Schneider and O. V. Vasilyev, “Wavelet Methods in Computational Fluid
Dynamics,” ANNUAL REVIEW OF FLUID MECHANICS, vol. 42, pp. 473–
503, 2010.

[101] L. Kim, K. Nakahashi, H. Jeong, and M. Ha, “High-density mesh Wow
computations by building-cube method,” Journal of Mechanical Science

and Technology, vol. 21, pp. 1306–1319, 2007, 10.1007/BF03179047. [Online].
Available: http://dx.doi.org/10.1007/BF03179047

[102] H. Kang, D. Lee, and D. Lee, “A study on CFD data compression using hybrid
supercompact wavelets,” Journal of Mechanical Science and Technology,
vol. 17, pp. 1784–1792, 2003, 10.1007/BF02983609. [Online]. Available:
http://dx.doi.org/10.1007/BF02983609

[103] O. Christensen and K. Christensen, Approximation Theory: From Taylor

Polynomials to Wavelets. Basel: Birkhäuser, 2004.

[104] M. Giles, “Wavelet compression for unsteady CFD data,” Oxford University
Computing Laboratory, Tech. Rep., October 1997.

[105] A. Trott, R. Moorhead, and J. McGinley, “The application of wavelets to
lossless compression and progressive transmission of Woating point data in
3D curvilinear grids,” in Proceedings of the Conference on Data Compression.
Washington, DC, USA: IEEE Computer Society, 1996, pp. 458–. [Online].
Available: http://dl.acm.org/citation.cfm?id=789084.789434

[106] J. Wilson, “Wavelet-based lossy compression of turbulence data,” in
Proceedings of the Conference on Data Compression, ser. DCC ’00.

150



REFERENCES

Washington, DC, USA: IEEE Computer Society, 2000, pp. 578–. [Online].
Available: http://dl.acm.org/citation.cfm?id=789087.789766

[107] J. P. Wilson, “Wavelet-based lossy compression of barotropic turbulence
simulation data,” Data Compression Conference, vol. 0, p. 0479, 2002.

[108] K. Amaratunga, “A wavelet-based approach for compressing kernel
data in large-scale simulations of 3D integral problems,” Computing

in Science and Eng., vol. 2, pp. 34–45, July 2000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=351387.351394

[109] R. Resiga, S. Muntean, S. Bernad, D. Balint, and I. Balint, Metode moderne

de calcul paralel pentru simularea curgerii Wuidelor. Editura Orizonturi
Universitare, 2003.

[110] J. W. Liu, “A compact row storage scheme for Cholesky factors using
elimination trees,” ACM Trans. Math. Softw., vol. 12, pp. 127–148, June 1986.
[Online]. Available: http://doi.acm.org/10.1145/6497.6499

[111] B. S. Andersen, J. A. Gunnels, F. G. Gustavson, J. K. Reid, and J. Waśniewski,
“A fully portable high performance minimal storage hybrid format Cholesky
algorithm,” ACM Trans. Math. Softw., vol. 31, pp. 201–227, June 2005.
[Online]. Available: http://doi.acm.org/10.1145/1067967.1067969

[112] B. P. Sommeijer and P. v. der Houwen, “Algorithm 621: Software with low
storage requirements for two-dimensional, nonlinear, parabolic diUerential
equations,” ACM Trans. Math. Softw., vol. 10, pp. 378–396, December 1984.
[Online]. Available: http://doi.acm.org/10.1145/2701.356103

[113] L. F. Shampine, “Storage reduction for Runge-Kutta codes,” ACM Trans.

Math. Softw., vol. 5, pp. 245–250, September 1979. [Online]. Available:
http://doi.acm.org/10.1145/355841.355842

[114] Z. Bittnar, J. Kruis, J. Němeček, B. Patzák, and D. Rypl, “Parallel and dis-
tributed computations for structural mechanics: A review,” in Civil and

Structural Engineering Computing: 2001, B. Topping, Ed. Civil-Comp Press,
2001, pp. 211–233.

[115] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover
reprint, 1944 ed. Cambridge: Cambridge University Press, 1927.

[116] E. P. N. Duque and S. M. Legensky, “Visualization of large-scale unsteady
computational Wuid dynamics datasets,” in SC ’05: Proceedings of the 2005

ACM/IEEE conference on Supercomputing. Washington, DC, USA: IEEE
Computer Society, 2005, p. 73.

151



REFERENCES

[117] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L. Ma, “In situ
visualization for large-scale combustion simulations,” IEEE Comput.

Graph. Appl., vol. 30, pp. 45–57, May 2010. [Online]. Available:
http://dx.doi.org/10.1109/MCG.2010.55

[118] A. Grama, G. Karypis, V. Kumar, and A. Gupta, Introduction to Parallel

Computing (2nd Edition), 2nd ed. Addison Wesley, January 2003.

[119] S. Muntean, Analiza numerică a curgerii în turbinele hidraulice Francis.
Timişoara: Editura Orizonturi Universitare, 2008.

[120] D. A. Lyn and W. Rodi, “The Wapping shear layer formed by Wow separation
from the forward corner of a square cylinder,” Journal of Fluid Mechanics,
vol. 267, pp. 353–376, 1994.

[121] L.-E. Anton and A. Baya, Mecanica Wuidelor, maşini hidraulice şi açtionări.
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