1920

Space-Time Window Reconstruction in
Parallel High Performance Numeric
Simulations. Application for CFD

Anton Alin-Adrian

Scientific supervisor: Prof.Dr.Eng. Cretu Vladimir-loan

Thesis submitted for the fulfilment of the requirements
for the degree of Doctor of Philosophy

28" of November 2011

Faculty of Automation and Computers
"Politehnica" University of Timisoara

(©Anton Alin-Adrian 2011

This work is released under the Creative Commons Attribution-NoDerivs
3.0 (CC-BY-ND) license terms. Please visit http://creativecommons.org/
licenses/by-nd/3.0/ .

Dedicated to my uncle, who has hallmarked me
into the way of science, and peacefully passed away. ..
To my family, with love.

Cuvant inainte

M-am intalnit cu calculatorul si tehnica de calcul inainte de inceperea scolii,
iar cu Internet-ul inca de la inceputurile sale. A devenit o pasiune pe care mi-am
cultivat-o apoi in anii de scoala, dar nu mi-am inchipuit cd o voi aprofunda si
printr-un doctorat.

S4 te apuci sa faci un doctorat imediat dupa finalizarea studiilor, chiar daca ai

trecut si printr-un masterat, e dificil si necesitd o anumita doza de inconstienta. In
astfel de momente din viata e important sa ai langa tine personalitati si modele
autentice, care pot sa cantareasca si sa-ti arate cu delicatetea necesara drumul pe
care ai putea sa-1 parcurgi.

Am avut cu sigurantd sansa, ca in astfel de momente decisive, sa am alaturi de
mine o personalitate inestimabild — unchiul meu — care mi-a deschis gustul pentru
performanta si mi-a aratat drumul spre ea. Din pacate s-a hotarat sa revina din
aceastd viatd, cu deplina seninatate, la inceputul acestui an, cand infloresc pomii
inainte sa dea in fruct.

Am fost zguduit si dezamagit, pentru ca mai aveam atatea de discutat. Am luat
atunci hotararea sa-i dedic in intregime teza.

Pe domnul Profesor Cretu l-am cunoscut de cand eram copil. Am avut privilegiul
pe tot parcursul colaborarii noastre, sa beneficiez de profesionalismul si caracterul
sau exceptional, de perseverenta sa in modestie si rabdare. Domnul Profesor Cretu
Vladimir impleteste cu modestie abilitétile profesionale cu virtutile personale, si ii
voi fi recunoscator intotdeauna pentru purtarea de grija si amprenta pe care si-a
lasat-o in viata mea, ca autentic si demn exemplu.

Cercetatorul Muntean Sebastian a fost alaturi de mine in toate momentele cheie
ale carierei mele in devenire, ne leaga o prietenie sincera, si ii sunt recunoscator
pentru efortul acordat de-a lungul timpului — fiind practic dupa domnul Profesor
Cretu cel mai apropiat colaborator in problemele ridicate la doctorat.

Le multumesc din suflet tuturor dascélilor mei, si ii asigur pe aceasta cale ca
fiecare strop de invatatura, venit din exemplul personal si pasiune, s-a strecurat
prin timp si a devenit o candela eternd, pe care o aprind cand simt nevoia sa ma
uit la cer. Imi amintesc cu drag cand cel dinti pe care l-am intalnit, in persoana
d-nei invatdtoare, a ramas marcat de textul scris pe usa camerei mele, sus, cu litere
strambe: "omul de stiinta Adrian". Nu lipsea nici una, desi am deprins acest lucru
mult mai tarziu la limba roméana, la scurt timp dupa ce m-am imprietenit si cu fizica.
Adresez profunda recunostinta celor care m-au ajutat si au investit in constructia
mea.

In sfarsit, doresc sa multumesc parintilor mei si familiei, fard a ciror sustinere,
rabdare si educatie nimic nu ar fi fost posibil. Sprijinul intelectual, emotional si
financiar pe care l-am primit obligd, si nu poate fi rasplatit. Este poate si motivul
pentru care am incercat sa dau tot ce pot, in orice fel de circumstante.

iii

Nadajduiesc ca numele Politehnicii din Timisoara sa ramana in continuare, la
aproape un centenar de la infiintarea ei, si la jumatate de veac de la constructia
primului calculator roménesc din mediul universitar, o emblema de calitate si
seriozitate pentru viitoarele generatii, purtand cat mai sus povara blazonului cu care
a fost investita de catre autoritatile in drept, la ctitorirea ei.

Sper sa ma aldtur prin aceasta lucrare generatiilor de studenti si dascéli care au
adus o farama de stralucire acestui blazon.

Autorul

iv

Abstract

The size of the output originating from large scale, numerical simulations poses
major bottlenecks in high performance, parallel computing. Recently it became
more and more evident that a radical change has to take place in the way scientists
and engineers handle numerical simulations. The beating up of more computational
horse power out of supercomputers, is a trend that simply hits the data wall long
before it gets a chance to start the ExaFLOP race. Supercomputing today is like riding
a barouche with horses that travel orders of magnitude faster than the storage; long
distance runs, add hills, and valleys, to the landscape; high performance computing
facilities, have become high-tech aquaria, where one can build the most advanced,
and expensive submarines, and then be limited to only staring at them through the
windows.

This thesis proposes a new concept for dealing with large-scale, numerical
simulation data. The new concept is called ‘space-time window reconstruction’, and
introduces a new style in high performance computing.

A space-time window is an independent numerical simulation, based on a large
scale version, capturing a subdomain of analysis, in both time and space.

The concept is implemented using two different solutions: the first is focused
on providing maximum flexibility to the user, while still retaining the flow features
from the global simulation; the second concentrates in reconstructing the very same
floating point bits. Which one is used depends on the user. Both provide substantial
data reduction, and alleviate the supercomputing data bottlenecks. However, they
are more powerful when used together, in a compact, stand-alone procedure.

A regular computational fluid dynamics, numerical simulation, is always shifted
in time, and sometimes even in space. It is common practice to analyse a domain
larger than what is really of interest, just to get the experimental data to match
against a smaller region in the space-time domain. It is thus natural to propose a
style of analysis that tries to extract and decouple the interesting simulation parts,
from the large scale version, which is normally tightened to expensive, and scarce
hardware installations. The obtained results lay down the foundations for a new
way of doing numerical analysis, which can be extended to many other scientific
fields, like, for instance, electrotechnics and magnetohydrodynamics. The overall
data reduction varies from 2x to 6% or better, but the proposed methods can only
be applied with certain restrictions in place.

In the closure, the thesis outlines a number of research directions which could
be approached in the future, and retains a firm position that the new paradigm has
to be polished by joining forces with colleagues from applied mathematics and with
experts in computational fluid dynamics (CFD). A list with claims and personal
contributions is also explained.

Keywords: data reduction, space-time window, numerical simulation, CFD

A\

Acknowledgements

I am grateful and thank my PhD supervisor Prof. Dr. Eng. Cretu Vladimir-Ioan,
for all of his support, help, patience, strength of character and guidance. Obsessed
with the highest level of quality for scientific research, I am deeply indebted to Dr.
Eng. Muntean Sebastian, for his most genuine help and advices.

Also, I acknowledge, credit and thank Prof. Dr. Eng. Resiga Romeo and Dr. Eng.
Ruprecht Albert for research directions, for their solid support and expertise, and
for allowing me to work in first hand research teams.

Next, my best thoughts go to Ms. Ivana Buntic Ogor, who prepared the square
cylinder test case for me, based on the work of Dr. Niklas Nordin. Also, I am grateful
to Dr. Bistrian Diana Alina who has supported me with mathematical details.

Numerical analysis and simulation is a difficult topic. The research teams from
CNISFC in Timigoara, and IHS in Stuttgart, have been overwhelmingly supportive,
and we would like to thank them for their assistance.

On the other hand, the project has received full support from the Department of
Computer and Software Engineering, in terms of logistics, expertise, documentation,
and glorious paperwork victories. Namely, I gratefully thank all my colleagues for
their sustainment, and my office mates, from both Timisoara and Stuttgart, for all
the long winters, encouragements, keen support, hot summers, and the things that
are better left unsaid.

This work was partially supported by the strategic grant POSDRU 6/1.5/5/13
(2008, project id 6998) of the Ministry of Labour, Family and Social Protection,
Romania, co-financed by the European Social Fund — Investing in People. The
research would not have been possible without the financial efforts sustained by the
management of the University, and the steadfastness of the rectorate.

I gratefully thank the bwGRiD project [1] for the computational resources.

If by any chance you think there’s something missing and that you have been
mistakenly left out, then I must have forgotten to include your name in the sources.

Please fill your name in here, beginning with capital letters:

and you are gratefully acknowledged.

vii

Contents

Abstract \%
1 Introduction 1
1.1 Motivation

1.2 Thesis objectives 2

1.3 Thesisoutline 3

2 High performance computing 7
2.1 Research strategy for understanding high performance computing . 7

2.2 Evolution of supercomputing 10

23 Closure 19

3 State of the art in dealing with large numerical simulation data 21
3.1 Methods from computer science 21

3.2 Methods from applied mathematics 28

33 Conclusion 33

4 Proposed solutions to the state of the art limitations 37
4.1 Problem Statement Lo Lo 37

4.2 Parallel Matrix Operations 39
4.2.1 Row-based decomposition 40

4.2.2 Column-based decomposition 41

4.2.3 Block-based decomposition L. 42

424 Closure. 43

4.3 Solution A: Space-time window reconstruction based on submodelling 44
4.4 Solution B: Space-time window reconstruction based on interpro-

cessortraffic L L Lo 48
45 Closure 49
5 Research strategy for space-time window reconstruction in CFD 51

6 Finite element proof of concept. Field reconstruction inside a window

subdomain of a 2D steady flow 55
6.1 Thetestcase 55
6.2 Concludingremarkso oL 63

7 Finite volume test case. Field reconstruction inside a window subdo-
main of a cvasi-3D steady flow 65
7.1 Thetestcase 65

ix

CONTENTS

7.2 Concluding remarks 69
8 Space-time window reconstruction in a 3D unsteady complex flow
based on submodelling 71
8.1 Implementationdetails 71
8.2 Time interpolation in a specially crafted testcase 80
8.3 The ERCOFTAC square cylinder benchmark 90
8.4 Concludingremarks 104
9 Space-time window reconstruction in a 3D unsteady complex flow
based on interprocessor traffic 109
9.1 Proofofconcept 109
9.2 Concluding remarks 117
10 Conclusions 121
10.1 Concluding remarks o 121
10.2 Contributions 131
10.3 Future research directions 138
References 141
Appendices 157

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2

3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1

List of Figures

Hierarchical Clustering 8
Partitioning Around Medoids 8
Computing in Science and Engineering 9
The European Road to Petascale Computing 11
World-Wide Supercomputer Applications 12
Supercomputer Applications 13
Continental Supercomputer Systems 13
Historical Peak Performance — based on Dongarraetal. [2] 14

Top500 Performance Growth — based on Strohmaier and Meuer [3] . 15
Zipfian Power Law of Top500 Supercomputers — based on Ripeanu [4] 16

Distribution Inside the List — based on Feitelson [5] 17
Supercomputer Architectures in TOP500 18
Decline of the Vector Processor in TOP500 19

FreeLoader Storage for Scientific Data — based on Vazhkudai et al. [6] 24
FPC: The Floating Point Compression Algorithm — based on Burtscher

and Ratanaworabhan [7] 27
Submodelling L 32
Bottleneck Problems: Typical Organisation for a HPC Facility . .. 38
Discretisation of the Analysis Domain 39
Serial Matrix-Vector Multiplication 40
Parallel Matrix Decompositions 40
Row-based Matrix-Vector Multiplication 41
All-Gather Traffic Exchange — based on Quinn [8] 41
Column-based Matrix-Vector Multiplication 42
All-to-All and Reduction Interprocessor Traffic — based on Quinn [8] 42
Block-based Matrix-Vector Multiplication 43
Block-based Interprocessor Traffic — based on Quinn [8] 43
Subdomain Boundary Conditions (BC) 44
Solution A: Space-Time Window Extraction 45
Mesh field transfer via linear interpolation 46
Solution A: Space-Time Window Reconstruction 47
Main Stages for the Space Time Window Method 47
Solution B: Interception and Storage of Interprocessor Traffic 48
Solution B: Space-Time Window Reconstruction 49
Research Strategy for Space-Time Window Reconstruction 52

Xi

LIST OF FIGURES

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22

Streamlines for the global simulation
Extraction at the Border of the Rectangle
Configuration of Boundary Values
Data Inside the Rectangle Border is Reconstructed by Computation

The Proof of Concept Works
The accuracy € varies when the FEM Resolution is Increased
Reconstruction based on Different Original Mesh Resolutions
Accuracy of Fine Reconstruction based on Coarse Simulation
Accuracy of Coarse Reconstruction based on Fine Simulation
Error Introduced by Interpolation Algorithms
Runge Effect on Polynomial Interpolation Points

Geometry of a Backward-Facing Step
Global Simulation
Interpolated smartPatches around the Reconstruction Window . . .
Data Inside the Window is Reconstructed
Zoom-in on Reconstructed Area
Pressure probe convergence

Extraction Points for the Initial Fields — I';pit6a -« « « v« o o o
Subdomain Reconstruction Mesh
Tetrahedral Decomposition
Tetrahedral Interpolation Algorithm
2D Linear Interpolation inside Triangle
Point Extraction Logic
Neighbour Cells
Directory Structure for the Space-Time Window
Extraction Mesh Generator
Bounding Box over Polyhedron
Algorithm Comparison
Algorithm Performance
Domain of analysis
Streamlines and velocity vectorsatt =3e —06
Streamlines and velocity vectorsatt =9e —06
Streamlines and velocity vectorsatt = 1.5e — 05
Global velocity contours o oL,
Recalculated velocity contours
Global pressure contours Lo
Reconstructed pressure contours
ERCOFTAC Square Cylinder
Karman vortex street 0.

xii

LIST OF FIGURES

8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33
8.34
8.35
8.36

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

10.1

Streamlines for the Karman vortex street 92
Global Domain Simulation 93
Extraction of The Bounding-Box Behind the Square Cylinder 94
Inflow and Outflow through the Space-Time Window 94
Global Streamlines through the Window Subdomain 95
Submodelled Streamlines L. 96
Submodelled Streamlines follow Global Streamlines 97
Global Streamlines vs Submodelled Velocity Contours 98
Global pressure fields 99
Vortex streetinmotion. 0000, 100
Reconstruction of the vortex features inside the space-time window 101
Submodelled Streamlines vs Reconstructed Pressure Contours . . . 102
Scaled percent difference between reconstructed and global velocity 103
Number of points with difference >5% 104
The mesh for processor PE1 L. 110
Velocity contours for PElatt; =6s. 111
Velocity vectors for PE1att; =6s 111
Velocity vectors for processor PEO. 112
Velocity vectors of the reconstructed fields for processor PEO 113
64-bit Floating Point Numbers during the interprocessor transfer . . 114
Compression Ratio vs Time Step Storage 115
Practical CompressionRatio 116
Performance of Individual Processors in the Top500 129

xiii

List of Tables

2.1 Bell’s Law applied to Supercomputing — Meuer [9]

10.1 Characteristics of a PhD Thesis in Computer Science — from Allen

Newell, published in Kung [10]

XV

Abbreviations

ACM Association for Computing Machinery 7
Al artificial intelligence. i 22
ASIC application-specific integrated circuit., 28
CAD computer aided design.............oouiiiiniiiii i 39
CAS computer aided SUIZETYottt e 21
CFD computational fluid dynamics.......... i v
CiSE computing in science and engineeringcovuiiuian... 8

CNISFC Centrul National pentru Ingineria Sistemelor cu Fluide Complexe

CSE computational science and engineering....................ccooiiin.... 1
CT computer tomographyouuuiti e 21
DEISA Distributed European Infrastructure for Supercomputing Applications. 11
DNS direct numerical simulation L. 28
DSP digital signal processing........... ..ot 28
DWT discrete wavelet transform oL 28
ECC error correcting code.ot 139
FEM finite element method 4
FVM finite volume method......... 4
FLOPS floating point operations per secondc.c.ooeiu... 10
FP floating point........... 26
FPGA field-programmable gate array 27
GPU Graphics Processing Unit.......... ..., 28
GPGPU General-Purpose computation on the Graphics Processing Unit. 96
GRIB GRIdded Binaryc..oiuiiniiiii i 23
GROWTH German-Romanian Workshop on Turbomachinery Hydrodynamics 3
GTS Global Telecommunication System ... 23
HET HPC European Taskforce......... ..., 11
HLRS Hochstleistungsrechenzentrum Stuttgart................. 157
HPC High Performance Computing ..., 4

IEEE Institute of Electrical and Electronics Engineers

IEEE-CS Institute of Electrical and Electronics Engineers — Computer Society . 7

xXvii

ABBREVIATIONS

IHS Institut fiir Stromungsmechanik und Hydraulische Strémungsmaschinen 157

ILP Instruction Level Parallelism.............. 26
LAN local area network...... ... 24
LES large eddy simulation i 117
MPP massively parallel processor.......... 18
NWP numerical weather prediction............. 23
ODE ordinary differential equation L. 26
PDE partial differential equation............. i 3
PE processing elemento 18
PRACE Partnership for Advanced Computing in Europe 11
RAM Random Access MEMOTYttt 139
RLE runlengthencoding........ i 26
RPM rotations per minuteottt 10
SMP symmetric multi-processor.............c.ouiriiiiiiiiiiiinan 18
SSDB scientific and statistical databases................. 26
VR virtual reality. 21

XViiil

‘A good soldier is a poor
scout’.

Cheyenne

Introduction

This chapter introduces the reader to one of the main challenges for computational
science and engineering (CSE). The motivation for this thesis is driven by the need
to have robust methods that can deal with very large numerical simulation data.
This is needed both for storage and transportation. High performance numerical
simulation bottlenecks are given by different states of the digital information. Data
originates from computation, proceeds throughout the communication networks
and finally takes physical form in storage devices. In reality, the process is much
more interleaved. The problem is that computational power has increased much
faster than the ability to handle the output. Therefore, supercomputing today is like
riding a barouche with horses that travel orders of magnitude faster than the storage.
Long distance runs add hills and valleys to the landscape. New ways of thinking
must emerge in order to tackle with the problems already at hand. It is not very
practical to produce a once in a lifetime, most polished numerical simulation, if then
one is dead in the water with it. In this respect, supercomputer facilities of our days
are like high-tech aquaria where one can build the most advanced and expensive
submarines, and then be limited to only staring at them through the windows. The
whole picture is thoroughly explained in the following section; afterwards, the
closure outlines the structure of the thesis.

1.1 Motivation

This section outlines the main motivations behind the thesis research. Thefirst
generation of computers are capable of cycling around 50-70 operations per second.
Half a century ago, a computer conceived and built in Timisoara has been used for
designing the hydroelectric dam at Vidraru, on the Arges river [11].

Present day computers perform 10'° times faster [12], and it is projected that
the exa-FLOPS barrier will be breached between 2020-2025. However, our ability
to store and transport information of this magnitude to consumer hardware, for
scientists and engineers to interpret, is lagging behind [13].

CHAPTER 1. INTRODUCTION

Many attempts for dealing with these problems are still made. The people from
the applied mathematics field have been developing ways for reducing numerical
simulation data to the minimum size. The majority of these methods have been
implemented in structural analysis domains, and are known, in a more generic
manner, as part of the global-local analysis framework[14, 15].

On the other hand, the people from computer science fields are also developing
methods of their very own. Floating point compression algorithms, for example,
based on prediction [7] and heuristic methods [16], wavelet solutions [17], peer to
peer data transport [6], and massive data infrastructures like in [18], are to name
just a few. The number of attack angles for dealing with large numerical simulation
data is vast. Numerous approaches from the literature are thoroughly examined in
the following chapters.

It is only natural that the end-users, who endorse in large scale numerical
analysis, like CFD scientists, are handling the problems in their own way. The
easiest and most frequent workaround is to subsample the results until something
that can be downloaded and post-processed at hand can be obtained. Skipping some
of the time steps really seems to conform to this Ockham’s razor approach, however,
it may create problems for space-time visualisation and post-processing.

In situ post-processing, on the other hand, is a more demanding method, and
enables the user to process all the data remotely. A very good survey in this respect
is given in [19]. Feature tracking and extraction allow the scientist to focus and
only deal with essential phenomenological information [20].

Different schools, different approaches, and only one problem to tackle with: a
robust, feasible way, for dealing with large numerical simulation results. Unlike
the state of the art solutions, which are shown to only scratch the surface of the
real problem, this thesis introduces a new concept, called ‘space-time window
reconstruction’. The idea brings a paradigm shift in numerical simulations, with
benefits for the scientific community, and direct contributions in CFD. The next
section introduces the main objectives for the research.

1.2 Thesis objectives

This section explains the objectives that had been established for the thesis.
Beginning with the 1960s, the people in aerospace engineering have been developing
and using private tricks of the trade to carry on with numerical analysis, on poor
hardware. The limitations in computer memory and performance determined the
users to invent workarounds. Sometimes these workarounds bear different names for
the same methods, depending on geographical location and the company involved.
Most of the knowledge remained black art, surfacing later in different numerical
analysis fields.

1.3. THESIS OUTLINE

The target of this thesis is to find robust ways to minimise the size of the data
produced by large scale, parallel numerical simulations Such simulations are most
likely modelling unsteady phenomena (using real time as a component). Since
numerical analysis has plenty of applications, this thesis is focused on CFD.

With CFD in mind, one needs to understand why techniques like submodelling
[15] or substructuring [14] are not borrowed by the community, after half a century
of existing practice. There must be a reason for which transient implementations are
scarce, and the common applications of these methods involve only static analysis.
To answer these questions, a new concept is proposed.

During the 5" German-Romanian Workshop on Turbomachinery Hydrodynamics
(GROWTH), held in July 2009 in Timisoara, the seeds for what it later became known
as the ‘space-time window reconstruction concept” have sparkled. This concept is
based on the fact that often enough, a CFD user has to produce simulations for very
large analysis domains, while only a small portion of the results, in both time and
space, are of interest. The main objective of this thesis is to produce the ‘space-time
window reconstruction’ concept, and use it as a means for bottleneck alleviation in
large scale, parallel HPC numerical simulations.

Numerical analysis and domain decomposition are mathematical subfields with
a very broad spectrum of interdisciplinarity. Numerous scientific and engineering
schools are involved, but with very little coupling along the communities. Anyone
who has ever dared to peek inside numerical analysis software, commercial or not,
recognises the esoteric programming style — owed to the lack of communication
between software engineers, on one hand, and mathematicians who understand
applied mathematics, on the other. The goal is to integrate what’s best available in
all of the relevant scientific branches, and find a ‘data minimising’ solution for CFD
applications.

Modern numerical analysis, including CFD, can not exist without computers. In
fact, history shows that most of the machines and devices designed for computing
had some sort of scientific or mathematical motivation in the background [21,

]. Either for solving partial differential equation (PDE) systems [23], projectile
trajectories [24] or cipher breaking [25], computers had quickly become the third
pillar in science — alongside theoretical and experimental research.

Since this is a computer science thesis, the focus is on data size reduction, with
benefits in storage and transportation. The next section outlines the organisation of
the document.

1.3 Thesis outline

This section describes the structure of the thesis; the rest of this document is
organised as follows:

CHAPTER 1. INTRODUCTION

Chapter 2 describes the background in the field of, and the strategy applied for,
understanding High Performance Computing (HPC). There are several publications
covering this chapter. The unconventional approaches to the literature fortunately
pay off, and a new perspective for looking at computational science and engineering
(CSE) is introduced, from the computational standpoint.

Chapter 3 contains a thorough survey of the state of the art in dealing with large
numerical simulation data. Different, independent schools of thought are drilled for
information, with a synthesis of the most relevant solutions from computer science,

applied mathematics and computational fluid dynamics. The conclusion is centred
around the observation that none of the methods from the state of the art have
enough interdisciplinarity to grasp the problem at its own roots. Therefore, they
only scratch the surface of it and fail to provide an effective solution.

Chapter 4 proposes the ‘space-time window reconstruction’ concept, provided
with two solutions for implementation. The two remedies for the problems in the
state of the art can be used either independently of one another, or with combined
force for maximum efficiency. The first one is based on submodelling, and provides
maximum flexibility, and the second one is a refined validation of solution A, where
the interpolation is completely removed, and the internal fields inside the space-time
window can be reconstructed with bit-level accuracy. It is based on the interception
of parallel interprocessor traffic.

Chapter 5 introduces the strategy applied for trying to tackle with the aforemen-
tioned problems, and therefore validating the new concept, by dealing with test
cases of gradually increasing complexity. The strategy is designed with fail-back
plans, because each of the test cases emerge from complete uncertainty as foun-
dations for the next level. Plan B corresponds to solution B, and it is fortunately
studied at the end, after all the other stages have proven to be successful.

The first test case, in Chapter 6, is a proof of concept for submodelling in CFD.
It is a trivial simulation using the finite element method (FEM), but like any first
step in uncharted territories, its first purpose is to encourage the research in the
planned direction, and to provide basic information about the problems that need to
be considered for the more complex targets.

The next one, in Chapter 7, is meant to verify if the procedure holds for rotation-
ary flows. Also, it is designed as a transition from thefinite element method (FEM)
to the finite volume method (FVM), and as a switch from the old PETSc toolkit]6]
to the OpenFOAM[27].

Chapter 8 shows a full 3D unsteady demonstration of submodelling, basically
introducing the concept of complete space-time window reconstruction in CFD.
This method is aimed for users who desire to obtain flexibility, while still reducing
the size of the data, and preserving the flow features.

Chapter 9 presents a different solution for space-time window reconstruction,
based on the interception of parallel interprocessor traffic. The method is designed

1.3. THESIS OUTLINE

for users who want to trade flexibility for perfectly accurate reconstructions.

The concluding chapter synthesizes the contributions, thoroughly draws the final
remarks, and outlines the future research directions. As a fundamental conclusion,
a compact procedure for resolving the numerical data deluge problem is presented,
based on the two solutions proposed in Chapter 4. This enables the user to bring the
most important parts of the large scale simulation on to commodity hardware, like
laptops and memory cards, and perform local post-processing with unprecedented
flexibility and freedom.

The thesis now continues with the chapter on High Performance Computing
(HPCQ).

High performance computing

2.1 Research strategy for understanding high
performance computing

Before continuing with the thesis, it is important to underline the background
in High Performance Computing. This section presents the strategy used by the
author to understand HPC, and the original viewpoint obtained during the first year
of study.

During the diploma thesis, key problems for store-and-forward communication
systems had been addressed, with a very specific application for mail transfer agents.
The contributions had been strictly computer science oriented, with improvements
for operating system services. The first contact with CFD has taken place during
the master’s program [21]. The final year of the master’s program was spent
trying to get the grasp of what HPC is, and how it relates to the problems that
need to be addressed by CFD — in particular — and numerical analysis, in general.
Meanwhile, the origins of computational devices have been studied, and the key
historic architectures have been organised into a fresh perspective. The author
concluded that scientific computing and numerical analysis were the main driving
forces for the development of modern supercomputers.

In order to cut throughout the marketing fog that surrounds the supercomputer
business, data mining techniques have been applied, on a collection of about 6000
related scientific articles [28]. Both partitioning around medoids [29] — Fig. 2.2 -
and single linkage hierarchical clustering [30] — Fig. 2.1 — have been used, with
comparable results.

Most of the papers have been selected from conference proceedings and journals
published by the Association for Computing Machinery (ACM) and the Institute
of Electrical and Electronics Engineers — Computer Society (IEEE-CS). Based on
silhouette graphs, it was concluded that the relationships between the studied
publications were reasonable, but artificial [31]. However, since the study has been
based on regular term frequencies rather than more appropriate inverse term metrics,

7

CHAPTER 2. HIGH PERFORMANCE COMPUTING

Publications Cluster Dendogram

0
8 _
o
4 &
(=} il
0
B
(=}
o
S 4
£ o
S
7}
T
ie}
o 4
(=}
_
8
8 e 9
=
S =

0.00
L
CHINAGRID
CSE08
CHALLENGES
HPCAPPS
SUPERCOMP
cc
HPDC
CCGRID
LOPLAS
TOCS
TOMACS
TOMS

Euclidean Distance
hclust (*, "complete”)

Figure 2.1: Hierarchical Clustering

the relationships between the periodicals merely reflect the writing style of the
articles, not the content.

Publications Cluster Silhouette

n=16 2 clusters C;
it njlavere si
CHALL

CHINA

CCGRI

CSEO08 1: 7066
cc

HPCAP

HPDC

TOCL
TALG
TOCS
TOMAC
TOMS 2: 91053
TACO
SUPER
LOPLA
JEA

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Silhouette width s;
Average silhouette width : 0.59

Figure 2.2: Partitioning Around Medoids

In defiance of that, the data acquisition process provided the blueprints for
grasping computing in science and engineering (CiSE), and for developing an

2.1. RESEARCH STRATEGY FOR UNDERSTANDING HIGH
PERFORMANCE COMPUTING

original model of the subject, detailed in [32] — see Fig. 2.3.

Physical
Phenomena

Operating Computer
System Architecture

Computing in

Science and Mathematical

Numerical

Algorithm Model
Engineering

Programming
language &
Paradigm

Network
Technology

Theory
of Com-
putation

Figure 2.3: Computing in Science and Engineering

Armed with the new knowledge, it has been easier to investigate the literature
for specific issues. Computer science is governed by two main international societies,
the ACM and the IEEE-CS. These two institutions are powerful enough to prescribe
the computing curricula around the world, and help shape the trends and the future
of the field.

The ACM for instance, publishes well-targeted surveys on computer science.
In Sameh et al. [33] the author specifically prospects the emergence of CSE, and
lays down the foundation for anyone trying to understand the confluence between
computers and modern science. More general purpose periodicals, like the ‘Com-
puter’ magazine and the “Transactions on Computers’, published by the IEEE-CS,
along with the ‘Communications of the ACM’, can also provide starting points for
investigations; the IEEE ‘Spectrum’ magazine has a computer section, with useful
information.

CHAPTER 2. HIGH PERFORMANCE COMPUTING

On the other hand, the literature that deals with CSE from a computational
perspective is very rare. In 1999 the IEEE-CS started to print the first CSE magazine,
which has been targeting computer science audiences ever since [34]. The ‘Interna-
tional Journal of High Performance Computing Applications’, published by SAGE
Ltd., and the ‘Journal of Supercomputing’, published by Springer Science+Business
Media, also keep an open computational perspective. The ACM “Transactions on
Mathematical Software’ and the “Transactions on Modelling and Computer Simula-
tion” have more specific targets, merely numerical algorithms, and non-numerical
simulations, respectively.

Tveito and Winther [35] introduce the reader to the methods that are used when
solving partial differential equations with computers. Together with the easy to
follow implementations of Nikishkov [36], the two books provide computer scientists
with common CSE foundations. Several other materials can provide background
state of the art information, like Tucker [37], Bader [38] and Benjamin [39].

Modern numerical analysis is considered to begin with the 1947 paper, by John
von Neumann and Herman Goldstine, ‘Numerical Inverting of Matrices of High
Order’ [40]. The well known bible of scientific computing is Press et al. [41], a
masterpiece in applied mathematics; also, a recent revision of Bird et al. [42] explains
the fundamental equations on transport phenomena.

Numerical analysis has driven the development of modern computers, together
with the opportunity, and necessity, to solve larger and more complex mathematical
problems, in science and engineering. The following section presents a short
synthesis on the evolution of modern supercomputing, up to the present and the
future.

2.2 Evolution of supercomputing

This section outlines the evolution of supercomputers since the beginning of
computational hardware, up to the present, and continuing with prospects for the
future.

The very first computers were designed to solve mathematical and scientific
problems. The Z1 model of Konrad Zuse, from 1938, was the world’s first freely
programmable, Turing-complete computer [43], using Boolean logic and binary
floating point numbers [44]. The Atanasoff-Berry from 1939 was specifically de-
signed to solve linear systems of equations; it was not programmable [23]. Many
others followed, paving the road for modern CSE.

The earliest machines used a clock cycle of 1 Hz, limited by the number of
rotations per minute (RPM) of various components. Modern computers use different
metrics for understanding performance. In terms of numerical and scientific comput-
ing, the number of floating point operations per second (FLOPS) is the most relevant.

10

2.2. EVOLUTION OF SUPERCOMPUTING

Starting with a series of papers from 1983 to 1992, Jack Dongarra introduced the
idea of benchmarking computers with the use of linear equation solvers [45-49].
The first LINPACK report dates back to 1979 [50].

The problem with FLOPS is that they fail to capture the real performance of the
machine. They can reflect the peak level, when the system is benchmarked with
specially crafted tests, the theoretical level only achieved by pencil and paper, and
the real, averaged level, when the machine is running genuine scientific applications,
from the default workload.

The real performance is always lower than both the peak and the theoretical
levels, and highly depends on the nature of the application which is in use. Dongarra
proposed a more complex set of benchmarks for supercomputers, which also stresses
the bandwidth bottlenecks from the internal system, and thus provide more realistic
values for the metrics [51].

The people from the Distributed European Infrastructure for Supercomputing
Applications (DEISA) and the Partnership for Advanced Computing in Europe
(PRACE) projects make use of more relevant metrics for benchmarking their systems.
Two separate benchmark suites containing different software applications, covering
the broad spectrum of computational sciences, are carefully maintained. For CFD,
FENFLOSS is used — a code that has been developed for more than 20 years
at the ‘Institut fir Stromungsmechanik und Hydraulische Stromungsmaschinen’,
University of Stuttgart [52].

The roadmap to European petascale computing is depicted in Fig. 2.4. The
HPCEUR project that started in 2004 morphed into the HPC European Taskforce
(HET), bringing scientists together for the creation of a scientific case.

The PRACE initiative is aimed to link Tier-0 country-level European super-
computing sites. The Memorandum of Understanding (MoU) was signed on the
16" of April 2007 by 16 member states in Berlin. The DEISA projects are lower
level, Tier-1 and Tier-2 connections between regional and local HPC centres, with
dedicated European backbones, to allow for local sites to beneit from cutting-edge,
supercomputing facilities.

N r & >
oo) \od

k@) S S $ & &
ST & S ¥

GEEDe®e o - e - @

2006 2008 2010 2012 2014

Figure 2.4: The European Road to Petascale Computing

The combined PRACE/DEISA ecosystem is designed to provide the EU with a
living HPC organism, having highways and neural centres, in consistency with the
European target to become the number one engine in scientific innovation. A global

11

CHAPTER 2. HIGH PERFORMANCE COMPUTING

filesystem is already accessible via grid middleware through the GEANT backbone.
Expensive FP6 and FP7 projects had already been consumed.

The two projects have naturally merged, with 20 EU and associated countries,
and cutting-edge supercomputing centres, marching together for European Petascale
access. The GEANT-supplied private backbone is continuously extended to connect
as many academic sites as possible. The PRACE project is now in the second
implementation phase (2IP), until the middle of 2012.

s
o
%)

Q
Cn
®
>
0
®

\

°/o

Research
Geophysics
Finance
Defense

Others

Figure 2.5: World-Wide Supercomputer Applications

Fig. 2.5 shows the most prominent applications of supercomputers throughout
the world. Research and finance are leading domains. Many of the participants in
the list do not specify their applications; however Fig. 2.6 considers a more detailed
presentation.

Besides research and finance, logistic services, geophysics, defence and informa-
tion processing share the largest number of HPC sites. In spite of the lower ranks
associated with the rest of the domains, the last position in the list is already a
TFLOP/s machine.

There are many other engineering and scientific fields that benefit from high per-
formance computing. Almost every aspect of scientfic research has been improved
with the help of computers — from historical and social humanistic studies, to particle
physics, protein folding, and computational chemistry. Whenever the specificity of

12

2.2. EVOLUTION OF SUPERCOMPUTING

World-Wide Supercomputer Applications

35

30 B

25 B

20]

15 b

Percent Share (%)

10 q

-
-

-
-

Q0 DDRDQ QY XEQYYLYSYLEBE QOESSTODESETE D
O 2E DL VWVLODGgOL LGS OCL R S S 235 g o8
EEEEE‘BC:wECw;>mC'Gmm> E 3 = 0 @ = o 2
=039 95 ¢ T > 59 Q3 85288 @ 3 ES gy S
P EB2FZOSL S T EESETLO0T=TFSE D TS 2 c g b
S g EMCcC T 3} ST gegPown » 9 2 8Ss 8 2 3
3 = s 8P 3 = o8 L 203 7w & o 5w 8)
255 [a} £ = oL £ a o @ O =3 =2 t0 ;
<z g O w c o S T = Ll = ol = 2
] = s 3 £ L EFEZ @
g < o = EU’DLI.IZ %
EE e 2o 5
o E [} @ =
£35 s ¢
= ©
= =

Figure 2.6: Supercomputer Applications

the problem allows for loosely-coupled systems to be used, quasi-supercomputing

systems can be constructed by volunteer computing projects. As of March 2011,
the cumulated power of the BOINC network [53] is that of two Tianhe-1A systems

which rank 1 in the Top500 list. Some of the projects also exploit GPU accelerators
to speed-up the ‘number crunching’.

< 0\0
«qu/\
Q).
N
Oceania
et (1.8) %
(564) "
4. B Europe
06%’ B Americas
5/% B Asia
B Oceania

Figure 2.7: Continental Supercomputer Systems

13

CHAPTER 2. HIGH PERFORMANCE COMPUTING

Peak Supercomputer Performance over Time

o
[
PFlop/s ° 4
x
29
9]
o~ O
s
TFlop/s % 835 /;U ‘
« 18 ®
w s S C
ge & /V{
©i (@]
GFlopl/s = BS “
: /i:// ¢
3 © =
@)
S Q [}
= a
= (@]
o
Q
MFlop/s 2; . /
Nz
as
o
KFlop/s ”
—
N
1930 1940 1950 1960 1970 1980 1990 2000 2010

Figure 2.8: Historical Peak Performance — based on Dongarra et al. [2]

In terms of the number of supercomputing sites, Europe shares one quarter of
the world-wide systems — Fig. 2.7. The American continent clearly dominates the
market. With China beginning to produce its own microprocessors, and the Tianhe
system knocking off the first rank, the Asian continent is promising to catch-up.
The same goes for the volunteering desktop computing projects; according to the
BOINC statistics, the US is followed by Germany, UK, Canada and Japan.

Again, it is important to remember that statistics have always been used for
marketing purposes. The number of FLOPS a system can perform have become
more or less irrelevant with time. During the age of third-generation computers
the software is of much more importance, and it is critical to identify the system
which will perform better when running very specific software implementations.
Nonetheless, the LINPACK Benchmark is widely used to solve a dense system of
linear equations on the world’s supercomputers, and produce the Top500 list [12].
The portable implementation uses 64-bit floating point operations and can be scaled
to various system architectures.

Fig. 2.8 shows the evolution of performance using historical supercomputers,
considered to be the top of the edge achievements during their time. It is based on
the work of Dongarra et al. [2].

The Y-axis is logarithmic. From Z1 to the RoadRunner (RR), the evolution
appears to be predictable. According to Fig. 2.8, the ExaFLOP — 10'® - barrier will
be broken around 2022 or in any case between 2020 and 2025.

Feitelson even proposed a formula for estimating the future performance of

14

2.2. EVOLUTION OF SUPERCOMPUTING

Top500 computers [54]. It is listed in equation (2.1).

Rmax(r,t) = Rmax(ro, to)(%)o'@%
In (2.1) r is the rank in the list and ¢ the year, and ry, ¢y are the current indexes;
Rmax is the maximal achieved performance expressed in GFLOPS, and can be taken
from the list. According to the prediction formula, the ExaFLOP barrier will be
taken down in 2020, and in 2022 the rank 1 position will triple the speed. The
estimation has been based on the Tianhe-1A leadership.
Fig. 2.9 shows the performance growth of the supercomputers using the TOP500.
It is based on Strohmaier and Meuer [3] where the authors correctly extrapolated
that the PetaFLOP limit will be breached at the end of 2008, six years before it
happened.

TOP500 Computational Power

EFlop/s

Rank 1
Rank 500
Total <§>
- ok
PFlop/s “’“’ -
> R s
o snene®
o o
TFlop/s <§> ”““‘
¢
‘000
GFlop/s

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Figure 2.9: Top500 Performance Growth — based on Strohmaier and Meuer [3]

The lowest rank clearly shows a uniform, exponential distribution appearing
as a straight line on the semi-log axes, but the first position in the list is jumpy.
The total cumulated power of the 500 ranks is suggesting that the world-wide
supercomputer performance is indeed experiencing an exponential development.
This is in agreement with Fig. 2.8, where Z1 and RoadRunner (RR) are on the same
track.

Fig. 2.10 plots the internal power distribution for the Top500 starting with the
first release. On log-log axis, the straight lines appear to have a Zipfian distribution
[55]. The plot is based on [4], where the author pleads for such a distribution.

15

CHAPTER 2. HIGH PERFORMANCE COMPUTING

Zipf Distribution in TOP500

I
PFlop/s 888 gossei " H
8 o 8 8 8000 «
o [o
0 o 00w
100000 o © o0 -
> $ o .
¢ L 4 : ie‘. A
o S B %ee a
. v 0 Ooo o |
g 10000 ER A AL M
Q T A v v V;;; o
& s 6 A 2 I{¥vvms .
e o o Axia]
@ TFlop/s - e '.gaééé -
= 13 1Y o
g o 0 ®
£ % ¥ g B ©
8 100
+ X
o+ o+
10
1
1 10 100 1000

Rank

Figure 2.10: Zipfian Power Law of Top500 Supercomputers — based on Ripeanu [4]

The slope of the lines is almost imperceptibly shallower than —1, suggesting
a very slight tendency towards diversity rather than redundancy; but overall an
excellent balance. The fact that the slope remains relatively constant throughout
time shows that the balance between diversity and redundancy is kept at optimal
levels, with very few ‘events’ for the head of the list.

However in Feitelson [5] it has been argued that the model is deteriorating. The
top of the list is a little bit too slow, and the bottom ranks grow up in performance
faster than they should. According the Zipf law, the product between rank and
frequency should be constant. Fig. 2.11 — Feitelson [5] — shows the Rmax axis
multiplied with the rank. Any data set in agreement with the Zipf law should
produce straight lines with a slope of 0, on semi-log axis.

Starting with 1998 the slopes are badly diverging from what they should be.
The model is slowly deteriorating, suggesting that improvements are necessary.
The smaller ranks show that they are more biased against the power law; a Zipf-
Mandelbrot law could be more appropriate.

Statistical studies are necessary in order to understand the future development
of the supercomputing industry. Even if the Top500 is not exhaustive nor complete,
it clearly stands-out for the world-wide high performance computing power. Under-
standing the correct phenomena that takes place within the supercomputer industry,
is a key to projecting its future impact on the scientific community.

Strohmaier and Meuer, for instance, introduced 4 classes of computer archi-
tectures in order to apply Bell’s law of computer class formation to the Top500;

16

2.2. EVOLUTION OF SUPERCOMPUTING

Zipf Deterioration in TOP500
1.6e+07

1.4e+07 //
1999
1.2e+07 / 2000
2001
le+07

/ 4 2005
2006

8e+06 / So0s |
2008

=y
©o
©O
(=2}
a

I

N

o

o

w
*Oo4drre

I

Rank x Rmax

N
o
o
©
® 60

6e+06

4e+06

0 100 200 300 400 50 600
Rank

Figure 2.11: Distribution Inside the List — based on Feitelson [5]

they used the taxonomy in Table 2.1 [9]. The law described in 1972 states that
every decade, technological advances enable a new, usually lower priced computing
platform to form. Once formed, each class is maintained as a quite independent
industry structure [56].

Data parallel systems Vector Cray Y-MP.X1, 1970-1990
NEC SX; SIMD CM-2
Custom scalar systems MPP T3EXT3,IBM SP 1980-2000
Scalar SMP/Constel.
Commodity clusters PC cluster, Blades 1990-2010
Power-efficient systems BG/L or BG/P 2000-2020
low-power systems

Table 2.1: Bell’s Law applied to Supercomputing — Meuer [9]
Bell also identified three directions of development for computers [56]:

e Constant price and increasing performance of an established class
e Supercomputers: a race to build the ‘largest’ computer of the day

e Novel, lower priced ‘minimal” computers

17

CHAPTER 2. HIGH PERFORMANCE COMPUTING

The Green500 list began in 2006 as an extension to the Top500, and redefined
system performance according to the amount of FLOPS per Watt [57]. An earlier
trend, of ‘supercomputing in small spaces’, sprang another branch of evolution [53].
It is expectable to see that BlueGene-like technology incorporates both of these
trends, and that massively parallel processor (MPP) systems of this kind are going
to emerge and dominate the market that is now ruled by beowulf clusters.

With the MPP market becoming more and more accessible, the technology shift
in computer architecture should become steeper. The data from the Top500 list
appears to be in agreement.

Supercomputer Architecture over Time

-
Clusters —— |

Constellations
SIMD

SMP ———

Single Processors
[2d5d

. K
|E i%wé X

F e
b

100

Percent Share (%)

20

0 o aroat . o M
1992 1994 1996 1998 2000 2002

LA I AL CETE) AN s e G
2004 2006 2008 2010 2012

Figure 2.12: Supercomputer Architectures in TOP500

Fig. 2.12 displays the evolution of the main supercomputer architectures as
reported to the Top500 database.

The symmetric multi-processor (SMP) rolled out before the millennium event,
leaving space for clusters and constellations. Clusters are, for now, the dominant
architecture with more than 80% shares. However, in 2010 they started to give up
to MPP, which began to display a subtle growth in popularity. This is in fact in
agreement with Table 2.1, which states that a new class of power-efficient systems
must be emerging.

Microprocessors reign over the Top500. Fig. 2.13 shows the decline of the vector
architecture. In agreement with Amdahl’s law, microprocessors have become much
easier to produce and replace. There is an upper limit in the maximum number of
processing elements (PEs) that can be incorporated in a system, and that may give

18

2.3. CLOSURE

Vector Processors in TOP500
50

T T T T
.. [—_Vector Processors]

40 u
= |
S 30
<]
]
&
= H N
3 [|
o 20
e]

e
10
|
] I.
s ng B gm
1 1

0
1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Figure 2.13: Decline of the Vector Processor in TOP500

chances for modest recurrences of the vector machines and cluster-like constellations
— an in-depth study is presented in Feitelson [54].

High performance computing is not only mature enough, but indispensable for
supplying the modern scientists and engineers with tools, that open doors which
have never been opened before. The closure condenses the principal lines of sight
from this chapter, and concludes the subject.

2.3 Closure

In the closure, the background in High Performance Computing is synthesized
with computer science in mind, through the new, emerging field of computing in
science and engineering.

High Performance Computing is a young, evolving, interdisciplinary domain, but
is here to stay. It involves many other self-sustaining fields of research, intertwined
at the confluence between computer science and applied mathematics. All of the
scientific and engineering fields have started to rely on supercomputing for venturing
into new frontiers: fluid dynamics, magnetohydrodynamics, electromagnetism,
particle physics, chemistry, astrophysics, electrostatics, mechanics, with no less
importance for HPC applications in art, architecture, and the social and life sciences.

From a computational standpoint, computational science and engineering (also
known as CiSE) is the name of the game. The new field of CSE, for the first time,

19

CHAPTER 2. HIGH PERFORMANCE COMPUTING

is bringing computer scientists together with researchers of different expertise, in
order to cope with the grand challenges that arise when new frontiers have to be
explored.

Armed with a correct understanding of the field, the following chapter inves-
tigates the available state of the art methods for dealing with large numerical
simulation data.

20

State of the art in dealing with large
numerical simulation data

3.1 Methods from computer science

There are many attempts to deal with the problem of large numerical simula-
tion data. This section is an extensive study which outlines the most important
approaches originating from the computer science field.

The UK. Research Councils define e-science as ‘large-scale science carried out
through distributed global collaborations enabled by networks, requiring access
to very large data collections, very large-scale computing resources, and high-
performance visualization’. One may be tempted to further elaborate; science
journalist George Johnson concludes his apologia: ‘as research on so many fronts
is becoming increasingly dependent on computation, all science, it seems, is
becoming computer science’ [59].

Europe is well aware of the importance of having a well-structured HPC in-
frastructure, and the urgent need to exchange experiences and know-how across
the Union [60]. On the other hand, deep scientific computing requires large, deep
data [61]. Therefore, the scientific world is entering a new paradigm, that of data-
intensive science [62]. As noted by Gray et al. [62], analysing this data requires
methods that can deal with huge datasets, and can find very subtle effects overlooked
in the previous measurements. The authors believe that most science happens when
data is examined in new ways.

In Gerndt et al. [63], the authors develop a virtual reality (VR) computer aided
surgery (CAS) system that resolves the airflow inside the patient’s nasal cavities, in
order to support the medical stuff during rhinosurgery. The anatomy is extracted
from computer tomography (CT). Besides being time-consuming, the simulation
faces serious problems to deal with the data in real time. The authors are investigat-
ing cache and prefetch operations for more advanced simulation runs. Similar CAS
examples show how critical it is, for numerical simulation data, to become available

21

CHAPTER 3. STATE OF THE ART IN DEALING WITH LARGE
NUMERICAL SIMULATION DATA

within real time constraints, when the context demands it.

Gray et al. [62] argue of why scientists avoid databases. The author of this thesis
believes that the explanations are subjective. The truth is that database software,
in general, lacks the functionality and features that can make it attractive, and
fast enough for science. The critique is extended by Burns et al. [64], who declare
scientific databases to be an ‘orphan in the database community’.

One important feature that is not yet fully developed, for example, is the ability
to handle time-varying data at high resolutions.

Based on experience and the developments in literature, the author of this
thesis believes that an ideal database system for CSE has to meet these very basic
constraints:

1. Provide high performance, distributed, parallel query processing;

2. Have an object-relational oriented structure;

3. Allow for very large number of levels for compressed metadata;

4. Provide large, multi-indexing capabilities;

5. Default to intelligent, compressed multi-scale, multi-resolution storage;

6. Provide smart, time-travelling, multi-resolution query processing;

Many of these features are already implemented in unconnected projects. Both
HDF [65] and netCDF [66] provide many of these requirements and are used by the
scientific community; they are the most popular (and portable) file formats in CSE,
and already present the abilities of simple database systems. The parallel version
of netCDF provides high performance implementations [67]; many other projects
follow the same blueprints.

We may one day realise that such a database system could evolve into something
that is closer to artificial intelligence (Al) and cyber-scientist assistants, for all the
complexity and processing power involved. In any case, time-travelling query
processing at arbitrary resolution levels is key for developing mature, dedicated
databases in CSE. Until then, proprietary and custom file formats are going to
prevail, maintaining the diversity of unconnected neurons that share the same
bazaar.

Databases are made of files, and files are organised into filesystems. The
literature bursts with multi-indexing, multi-scale metadata approaches for handling
scientific data storage, which sit on top of database systems. These in turn can
benefit from parallel filesystems [68].

Korsemeyer and Thompson [69] see the Web and the Grid, as part of the Internet
infrastructure, the de facto medium for sharing raw scientific data. However, the

22

3.1. METHODS FROM COMPUTER SCIENCE

dedicated middleware, such as a specialised database system, is acknowledged to be
missing.

The natural approach to access high performance resources is centralistic. This
poses several problems. Strategic locations for data warehouses that can be counted
on fingers are easy to spot, and vulnerable targets. In Europe, they are supposed
to be 5, with several backup regions. Destroying the information from only one of
such places may prove to be more horrific on the long-term than the direct bombing
of hospitals. Many other scenarios can render the data inaccessible, and suspend the
research activities on large scale levels.

It is essential that smart techniques are developed in order to:

1. Retain easily portable, minimal information from the huge datasets;
2. Allow for quick reconstruction of the key original data features;

3. Cheaply empower independent researches to continue the scientific investiga-
tions;

Hiraki et al. [18] propose a ‘data reservoir’ approach, which uses multi-gigabit
backbone networks to connect research facilities together. The implementation is
based on the iSCSI protocol [70].

The people from numerical weather prediction (NWP) face serious challenges
when dealing with simulation data. The solution usually involves some sort of
Grid transport [71]. On the other hand, when the forecast has expired and can
be adjusted with experimental measurements, the numerical simulation becomes
obsolete.

The Global Telecommunication System (GTS) is a point-to-point and point-to-
multipoint network that interconnects meteorological telecommunication centres.
The most popular data format is the GRIdded Binary (GRIB), with various versions
and improvements [72].

Skidmore et al. [73] propose a virtual notebook environment, implemented on
top of web services, aimed for providing scientists with support for collaboration,
and easy management of computational experiments. It is an electronic version
of the paper-based lab notebook. Experiments can be launched using a visual
specification language. The prototype is tested with neuropsychological data.

An intelligent data service system has been developed at the Sandia National
Laboratories for internal use [74]. The key principle identified in the paper is that
very large data sets should be processed in situ, and not moved around. Based on
this idea, smaller data objects representing key features are extracted and tracked
inside the facility, in order to provide scientists with an easy way to transport, and
interpret, information. After all, the final integrator of visual representations is the
human brain.

23

CHAPTER 3. STATE OF THE ART IN DEALING WITH LARGE
NUMERICAL SIMULATION DATA

Monti et al. [75] use peer-2-peer technologies to offload simulation data from
HPC centres. By using an overlay of mediator nodes, they are able to reduce the
transfer time by almost an order of magnitude. Furthermore, Vazhkudai et al. [6] -
see Fig.3.1 — introduce the FreeLoader, a distributed local area network (LAN) storage
system, to cope with data deluge from experiments, simulations, and apparatus.

gsiftp://some.address-1/ ftp://some.other.address-N

Data Source H B B B Data Source

1
REMOTE

LOCAL

OWNLOAD USING DIFFERENT PROTOCOLS

USER I I

SCIENTIFIC
APPLICATION
FreelLoader
CLIENT

arallel get()

Morsels in Stripe

Desktop Benefactors

METADATA MANAGEMENT

FREELOADER
STORAGE CLOUD

Figure 3.1: FreeLoader Storage for Scientific Data — based on Vazhkudai et al. [6]

The final stage in the data analysis workflow usually requires intensive post-
processing and visualisation operations at local user computers, most likely local
desktop workstations and personal notebooks. End-user hardware has an increasing
computational performance, but is ill-equipped when it comes to I/O bandwidth
rates. On the contrary, a large portion of the local hard disk storage is free. Based
on these observations, the FreeLoader project exploits data locality by intelligent
caching and prefetching of data inside the LAN. The storage is donated by the local
users — called benefactors, just like in regular peer-2-peer distributed systems.

End-user hard drives have lower I/O rates than common local area networks.
This enables the clients to use parallel get() and put() operations from different
benefactor machines. The data is organised into stripes (chunks) and fragmented
into smaller morsels.

The FreeLoader borrows desktop storage scavenging, from peer-2-peer systems,

24

3.1. METHODS FROM COMPUTER SCIENCE

parallel I/O and data stripping from parallel filesystems, and caching from coopera-
tive caching systems Vazhkudai et al. [6]. Hot data always replaces seldom accessed
information, and when the requested bits are not available inside the LAN, they get
downloaded from remote locations, repositories, and archival sites. This makes the
FreeLoader approach well suited for implementation at institute and facility level.
One can easily envision grids of FreeLoader systems connected together, when
additional security features are in place.

Huge data sets are only useful if they can be visualised. Visualisation maps
large quantities of data into graphical representations, such that they exploit the
superior visual processing capability of the human brain, which translates the visible
spectrum into experiences that can be analysed inside the internal, associative neural
network. That is, visualisation enables the human brain to quickly draw inferences
and detect patterns. Developing powerful visualisation tools plays a key role in CSE
[76].

Unat et al. [77] present adaptive subsampling (coarsening) techniques, for the
compression of scientific data. Just like wavelet compression, which is reviewed in
the next section, adaptive coarsening is a multi-resolution technique. Compression
ratios of at most 8:1 are achieved for turbulent flow numerical simulations. These
can be adjusted to be in agreement with the necessary accuracy. The method
however has not been compared with adaptive mesh re finement techniques — like
those described by Jasak [78]. The main goal of adaptive coarsening is to achieve
compression, and for adaptive mesh refinement the goal is to optimise the solution
grid; however, in both cases, the essential features of the simulation are retained,
according to specified accuracy constraints.

Techniques from high performance visual data analysis and scientific data
management are combined in [79], and applied for accelerator science. In [80],
the authors present multi-resolution bitmap indexes as a method to improve the
performance of scientific databases. Data from earth and rocket science is used, with
parallel implementations.

Remote visualisation of a numerically simulated turbulent jet is described in
[81]. The authors propose the usage of “visually lossless’ (lossy) video compression
to transport images over wide area networks in real time. The data is rendered
using a local cluster, but partial rendering is suggested for user clients with graphic
capabilities.

Computer engineering has been developing smart look-ahead techniques for a
long time, in order to alleviate performance bottlenecks. Memory caches are good
examples for exploiting data locality [82]. Texture compression has also been used
in computer graphics for a while. With embedded systems becoming more and more
ubiquitous, several code-size reduction techniques have started to take shape [83];
finally, bus level compression boosts the data rate for intensive applications [84].

Out of this primordial soup comes the idea offloating point compression, using

25

CHAPTER 3. STATE OF THE ART IN DEALING WITH LARGE
NUMERICAL SIMULATION DATA

predictors, context dictionaries, value differencing — for time locality — and, when
geometric information is available, spatial locality.

Floating points, especially double precision, are widespread in scientific use.
Bassiouni [85] explores the challenges and benefits that arise when compressing
scientific and statistical databasess (SSDBs). Differencing and run length encoding
(RLE) are the most frequent techniques.

Ghido [#6] introduces an algorithm for lossless compression of IEEE floating
point audio. He claims that the method, based on integer linearisation, is also
applicable on different types of data sets; however, the algorithm is designed for
32-bit audio and needs to be extended for double precision data.

The work of Xie and Qin [87] is also single precision, but is aimed for compress-
ing seismic data. The method uses a differential predictor with adaptive contexts.
Engelson et al. [33] on the other hand, use a predictive coder which is based on
high-order polynomial extrapolation, and they tests it with ordinary differential
equation (ODE) data.

When geometric data, like mesh information, is available, spatial coordinates
can also be compressed and smarter locality algorithms be devised. Such is the
work of Lindstrom and Isenburg [89], where the authors use a Lorenz predictor to
produce high throughput compression rates. Without the mesh information, the
compression ratio of other algorithms may depend on how the structure is transited
by the encoder.

Starting with 2006, floating point compression for numerical simulation data
has started to mature. Ratanaworabhan et al. [90] use a differential finite context
method. The original method was introduced in hardware design to increase the
Instruction Level Parallelism (ILP) of microprocessors [91]. The compressor works
for raw streams of double precision floating point (FP) numbers, without requiring
any geometric data. Later on, in [92], they introduce FPC, a compressor for linear
streams of 64-bit floating point data. The method is finally polished and disseminated
via [7]. FPC achieves compression ratios varying between 98% and 6.64%, the later
being obtained for numerical plasma simulation data. Also, in terms of speed, it
outperforms state of the art competitors on the given data set, and its simplicity
allows it to be implemented in very high throughput hardware devices.

Fig.3.2 is based on Burtscher and Ratanaworabhan [7], and describes the FPC
algorithm. The authors use both fem [93] and dfem [91] for predicting data inside
the floating point stream. The predicted value that is closer to the original is going to
be XOR-ed against it, so that as many bits as possible are set to zero. The number of
leading zero bits is encoded as a 3-bit value. An additional bit is added to distinguish
between the predictors that were used. The resulting nibble together with the
‘residual’ non-zero values are sent to the compressed bit stream in data blocks, using
interleaved positions to obtain byte-level efficiency.

The FPC algorithm is very easy to implement on both hardware and software,

26

3.1. METHODS FROM COMPUTER SCIENCE

IEEE 754 Floating Point Double Precision Data Stream

IS FCM
PREDICTOR
CLOSER?

DFCM

| Leading Zero Encoder |

\ 4

Bit-Compressed Floating Point Data Stream

Figure 3.2: FPC: The Floating Point Compression Algorithm — based on Burtscher
and Ratanaworabhan [7]

is fast, and can be used on any sort of double precisionfloating point data, without
prior knowledge of the content type or any metadata information. This makes it
suitable for implementation in numerical simulation storage formats and makes
it a preferred choice for combining it with different technologies (including the
FreeLoader).

On the other hand, turbulent data is harder to predict, in space, and the common
octree data structures [94], that are used to hold mesh field information, are stored
using geometric numbering schemes — therefore, compression ratios for unprepared
streams of spatial vector and scalar fields, holding turbulence data, are going to be
suboptimal.

The parallel version of FPC, pFPC, is designed for speed, and is able to trade off

compression ratio for throughput [95]. Compression is usually more efficient when
the number of parallel threads reflect the data dimensionality. For vector fields, data
dimensionality is 3 — best compression factors are obtained when data is interleaved
on 3 channels. It is critical to pre-process the data before compression and transform
everything into a properly shifted floating point stream. How to obtain the optimal
permutation, especially when the simulated phenomena are unsteady, is a matter
yet to be investigated, and it is not the scope of this thesis.

The self-tuning FPC, gFPC, uses genetic algorithms to adapt its hash function,
and it is four times slower than the original, but achieves slightly better compression
rates [16].

Sano et al. [96] use field-programmable gate array (FPGA) hardware to im-
plement another compressor, this time using a 1D cubic predictor which is more

27

CHAPTER 3. STATE OF THE ART IN DEALING WITH LARGE
NUMERICAL SIMULATION DATA

efficient than the 2D Lorenz method. Tomari et al. [97] use software for the com-
pression, and application-specific integrated circuits (ASICs) for decompression. The
mantissa is not compressed. Exponents of 11 bits, are packed together with the
sign in 12-bit words, which, in turn, are grouped into 4-word vectors. Considering
64 vectors at a time, data is transmitted in three possible scenarios related to the
context dictionary: near match, perfect match and uncompressed. When the block
of vectors looks similar with previously seen data, they can be compressed by an
index and a small difference if necessary. Mantissa remains untouched, and can be
encoded with usual encoding schemes.

As a continuation of pFPC, GFC is designed by O’Neil and Burtscher [98] for
massively parallel Graphics Processing Unit (GPU) computing. Since GPU devices
are usually integer oriented, the authors interpret the floating point data as a stream
of integers, in order to gain speed.

The school of computer science has been producing valuable solutions based on
floating point compression and peer to peer systems. The remaining of this chapter
presents related works from applied mathematics, and draws the final remarks on

how the new concept which the author proposes connects with the state of the art
in different scientific domains.

3.2 Methods from applied mathematics

The previous section has explored the methods for dealing with large numerical
simulation data from the computer science perspective. However, since computa-
tional science and engineering is a borderline field of study with strong mathematical
foundations, it sounds reasonable to also review the available approaches originating
in applied mathematics.

The discovery of discrete wavelet transforms (DWTs) have revolutionised
fields like digital signal processing (DSP), and image compression. The FBI uses
Daubechies wavelets to compress grayscale fingerprint data up to 5%—8%. [99]. But
wavelets have also started to be used in CFD, for modelling turbulence [100].

Kim et al. [101] propose a method for dealing with ultra large scale direct numer-
ical simulations (DNSs); the procedure also facilitates fast domain decomposition
and easy implementation of compression.

Lossy, multiresolution CFD compression, using wavelets, has slowly started to
spread. Kang et al. [102] propose a hybrid method using super-compact wavelets.
They achieve compression ratios between 14.5:1-34.8:1 with acceptable losses in ac-
curacy. They also propose that such methods should be used for remote visualisation
of large scale numerical data.

In order to display the idea behind wavelet compression, the Haar wavelets
are used, based on the explanation from [103] and the work in [104]. Consider the

28

3.2. METHODS FROM APPLIED MATHEMATICS

continuous function in (3.1).

f:0,1]—R

The goal is to approximate f with piecewise constant functions. The natural
way would be to split [0, 1] into a number of intervals, and to approximate f(x) on
each of these intervals with the average value of f on that interval. For simplicity,
consider the interval [0, 1] to be split into N = 2" intervals of equal length.

These intervals are all of length 27%, so the average value of function f on the
n'" interval is given by ay, in (3.2); k is called the discretisation scale.

(n+1)27F
af, = 2’“/ f(z)dx 3.2

2—k
Now that the data has been discretised into ay, values, let A,, be described by
(3.3) as a set of discrete entries that require compression.

A, ={a;, |n=0,1,.2" -1}
Define the directed distances d; as in (3.4), with j = {0, 1,.., 271},
dj _ A fa; _2af2j—1

and the sum s; as in (3.5).

5; = A fo +2af2j1
The process is reversible since ay,; = s; + d;, and ay,, , = s; — d;. This is

just a one level transformation. The full wavelet transform must be performed in a
recursive manner, such that the s; values from step m must become the A,, values
of step m + 1.

If sy) and dy) denote the appropriate values at level [/, then 850) = A,, and the
values for the higher levels are recursively given by (3.6) and (3.7).

(1-1) (I-1)
l Sp; TSy
T =

(-1 (-1

0 _ %2 52j-1
=2l
The inverse transform is also given by (3.8) and (3.9).
Sgl]) _ S§l+1) +d§-l+1)

29

CHAPTER 3. STATE OF THE ART IN DEALING WITH LARGE
NUMERICAL SIMULATION DATA

3&?—1 _ SgH—l) . d(l—i—l)

J

Compression is achieved by only storing the differences dgl) at each level, the
number of which is halved during each iteration. The topmost level is L = logs N =
k, having a single distance coefficient d(()L) and a summation coefficient s(()L) that
also has to be stored. L is called the level of recursion and may be different from k.
The discretisation scale is only important at a di fferent stage, and is not necessary
when the data is already in a numerical form.

It is easy to notice that wavelets allow for multiscale levels of detail to be
decomposed from a discretised signal. That means that if not all of the levels of
details are necessary, one can simply achieve lossy compression by limiting the
recursion level L. The nice effect is that wavelet decomposition will tend to preserve
the cumulative energy from a given dataset, and thus allow for an implicit version
of feature extraction.

Another effect is that the difference data can be encoded on a lower number of
bits. Different encoding schemes can be deployed, and very small coefficients can
be neglected. Other wavelets are more efficient at compressing data, and it is still a
matter of investigation to chose the right model for a given data set.

Trott et al. [105] for instance use wavelet compression on 32-bit FP numbers and
state that only 3% of the data is necessary in order to produce a decent visualisation.
While the brain integrates the visual information, the rest of the data can be
downloaded in the background, to obtain the original uncompressed version.

CFD simulations often present vorticity and shocks which are very hard to
capture in progressive decompositions. However, wavelet based methods have the
ability to capture the time-frequency relationship with ease, and are suitable for
such discontinuities in the data stream. Standard Huffman coding is used for the
compression of the wavelet coefficients.

Wilson [106] claims that ‘lossy compression is the only choice for turbulence
data’. Later in [107] his findings conclude that data from turbulence simulation does
not usefully compress with lossless methods. Considering 8 bits per pixel to be the
common practice data rate for visualisation, he proposes a 4:1 compression ratio.
However, not all scientific visualisations can be reduced to the necessary bit rate.

Giles [104] presents a report for wavelet compression of unsteady CFD data.
He compares the advantages over Fourier compression and arguments that ‘the
local nature of wavelets means that a discontinuity in the data only affects the
amplitudes’. He also considers CDF 3,1 wavelets for better performance than the
popular Haar ones.

Amaratunga [108] applies wavelet compression to reduce the in-core kernel
matrix storage for large-scale simulations of 3D integral problems.

Numerical data deluge is not only a problem during post-processing operations.

30

3.2. METHODS FROM APPLIED MATHEMATICS

Several matrix storage formats have been proposed to deal with this issue [109].
Liu [110] proposes a compact row-oriented storage scheme for Cholesky factors.
Andersen et al. [111] implement a Cholesky solution of symmetric positive-definite
systems of equations, using packed storage.

Sommeijer and der Houwen [112] use techniques for low-memory programming
in order to develop a numerical algorithm for the solution of parabolic equations.
Shampine [113] uses similar techniques for Runge-Kutta codes.

Structural analysis is the computational science that deals with the analysis and
simulations of numerical stress forces within mechanical structures. Most of the
phenomena can be described by linear equation models, unlike complex, industrial
CFD, and they have immediate, practical applications in engineering.

The roots go back in the 1960s, in aero-space engineering, when it was easier
to analyse the stress forces that appear in aircraft structures during different flight
regimes, rather than compute very basic streamlines around the fuselage.

At that time, computer memory was very limited, and scientists were forced to
develop ingenious workarounds to get the job done. One of the common practice
was static system condensation, also known as substructuring [14].

Static system reduction (condensation) aims to split a system of equations like
in (3.10) into subparts that can be dealt with independently.

Az =b 3.10

Substructuring methods are based on a more generic mathematical concept,
called ‘partial matrix inversion’ or ‘partial elimination’. The goal of substructuring
is to condense the system of equations to lower numbers of unknowns. This can be
done in many ways, but for the sake of simplicity the explanations from [114] are
used as follows.

In (3.10) the matrix of the system is A € R™*", and z € R", b € R" are vectors
with z holding the unknown variables.

The system can be split into blocks like in (3.11).

Ay A M - p(
If Ay, is regular, then (1) can be expressed in terms of (3.12).

o = AR (01 — Ab®)

Now substitute (3.12) in (3.11) to get (3.13), which only contains half of the
unknown vector.

(A22 - A21A;11A12)l'(2) = b(2) - AglAfllb(l) 3.13

31

CHAPTER 3. STATE OF THE ART IN DEALING WITH LARGE
NUMERICAL SIMULATION DATA

Substructuring and superelements are also useful for commercial or strategic
reasons, when different engineering teams have to complete the analysis of different
natural subparts independently.

The whole idea behind iterative numerical methods is to avoid inverting the ma-
trix in (3.10), and produce an approximate solution through repeated matrix-vector
multiplications. This makes substructuring unfeasible for large scale CFD simula-
tions since it is based on the inversion of matrix subparts. Smarter techniques, like
partial Gauss elimination [41] or complex approaches for large sparse system matri-
ces are known. However, the complexity of CFD phenomena requires a solution for
very large algebraic systems, and that makes similar attempts unfeasible. This is,
in the author’s opinion, the main reason why partial elimination techniques have
not been developed in CFD. The nonlinearity of the turbulent flows translates into
many degrees of freedom which need to be taken into account. Also, substructuring
in the middle of a fluid flow, in order to capture interesting features, makes the
boundaries completely dependant on the global simulation. The procedure, besides
being extremely expensive, would have to be repeated during each time step. In
structural engineering, the subparts are carefully chosen in order to minimise the
boundary contacts, and that’s when following the natural components becomes
standard practice: wings, tails, and cockpits.

N cut-boundary

\ eys
Coarse model conditions, -
‘f—-l\f :/ o
I 3l
y ~
p u :
(ﬁ-—
\
] el y
~T N e
r i [y
¢ ?\ Submodel
~ ,f’ \
o o \
\
\

Figure 3.3: Submodelling

Another method, sometimes called ‘global-local’ analysis, is submodelling [15].
Global-local analysis is performed in stages — see Fig.3.3. First, a coarse simulation
of the global model is performed. Out of it, boundaries are cut and a submodel
is extracted with a higher resolution level. In order to transfer the data from the
coarser mesh to the finer mesh, interpolation is used. The submodel is then analysed
independently from the global model. As a side effect, data for the cut-boundary

32

3.3. CONCLUSION

conditions is orders of magnitude smaller than the global simulation fields.

However the procedure is very restrictive. Submodelling can only be applied
when the local phenomena is uncoupled with the global simulation. In structural
analysis, for example, this is known as the Saint Venant’s principle, and it also
works for electrostatics. The principle states that ‘the strains that can be produced
in a body by the application, to a small part of its surface, of a system of forces
statically equivalent to zero force and zero couple, are of negligible magnitude at
distances which are large compared with the linear dimensions of the part’[115].
In more colloquial words, if a sheet of paper with a circular hole in the middle, is
exposed to marginal constant forces which tend to elongate its length, the stress
induced far away from the hole is negligible, as opposed to the stress concentrated
around the hole which will produce cracks in the material. Impurities can take the
role of holes or cracks, so this principle plays a key role in material stress analysis.

But what is more important now in relation with storage requirements, is
that submodelling can not be applied when this principle does not hold. Not
only does this principle not hold in CFD, but submodelling nonlinear equations
in the middle of a turbulent flow has never been attempted. One of the methods
presented in this thesis is based on submodelling. Mass and flux conservation
have to be taken into account, and one has to develop methods for reconnecting
the equations together again after the submodel is extracted. During unsteady
simulations, errors are introduced at each time iteration, so the procedures have
to be repeated. The complexity of the proposed method goes way beyond classic
submodelling techniques.

This section produced a synthesis of what applied mathematics has to o ffer for
dealing with large numerical simulation data. The conclusion will recapitulate the
limitations in the state of the art and will state the problem that is being challenged
by the thesis.

3.3 Conclusion

This chapter has introduced a thorough survey of the state of the art methods for
dealing with large, numerical simulation data. The final section closes the chapter by
recapitulating the limitations from the current solutions, and by stating the problem
that needs to be solved in the next chapters.

Large sizes of data have always posed serious problems to the computer science
community. This still holds true when large sizes of data used to mean a few
kilobytes. The ability to distil information may be of more importance than the
ability of simply producing or acquiring it. Truth cannot be derived from facts,
it proceeds from meaning. Just like Tycho Brahe used to develop false planetary
models based on the very thorough observations that he made, it took Kepler another

33

CHAPTER 3. STATE OF THE ART IN DEALING WITH LARGE
NUMERICAL SIMULATION DATA

decade of hard work, using the very same information, to discover the laws that
later enabled Newton, to comprehend the laws of universal gravitation.

Several techniques have been developed that are clearly driven by the unmedi-
ated desire to comprehend the large datasets at hand, either produced by simulations,
or acquired by sensors. All these approaches relay on the fact that the human brain
is the final and ultimate computer, capable of integrating and processing every-
thing. And for now the best way to interface the brain with the data is through
visualisation, by bombarding it with controlled fluxes of photons.

Duque and Legensky [116] use in-situ post-processing and visualisation for
large-scale unsteady CFD data. Driven by the desire to understand the results, they
consider that often enough it is only necessary to extract isosurfaces and transport
them to the client side for further post-processing. Also, they make use of intelligent
GPU texture mapping so that unnecessary bus traffic is avoided.

Yu et al. [117] propose in-situ visualisation as a scalable way for dealing with
very large, highly intermittent and unsteady, turbulent combustion phenomena.
Ignition and extinction are given as examples.

Kwan-Liu et al. [19] propose smart in-situ visualisation techniques as the so-
lution for ultra large numerical simulati<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>