
Java Threads

Basics: Thread. Runnable

Synchronization Issues

Concurrent collections: java.util.concurrent.*

Task Parallelism/Task Pools:

Executor Framework, ForkJoin Framework

Bibliography

• Parallel Programming (in Java) @ ETH Zurich
https://spcl.ethz.ch/Teaching/2020-pp/

• Lesson: Concurrency (The Java Tutorials > Essential Java
Classes)

https://spcl.ethz.ch/Teaching/2020-pp/
https://spcl.ethz.ch/Teaching/2020-pp/
https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

Threads and Parallelism in Java

• Java supports multiple APIs/frameworks for
concurrency/parallelism

• different levels of abstractions, different concepts

1. Raw Threads: (similar Posix threads)
• Explicitly create threads assigning them work to do
• Synchronization primitives for mutual exclusion and signaling
• Class Thread, Interface Runnable

2. Task pools: (similar omp task)
• Executor framework
• Fork-Join framework

3. Parallel streams – not discussed in this class

https://docs.oracle.com/javase/tutorial/essential/concurrency/threads.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

Java Threads

• Thread:
• A set of instructions to be executed one at a time, in a

specified order

• Threads exist within a process — every process has at
least one thread. Threads share the process's resources,
including memory and open files.

• A special Thread class is part of the core language
java.lang.Thread

• Creating Java Threads: 2 options:
1. Instantiating a subclass of Thread

2. Implementing a Runnable

Thread Objects

• Each thread is associated with an instance of the class
Thread.

• Class java.lang.Thread

• Interface java.lang.Runnable

• Class Thread implements Runnable

• There are different strategies for using Thread objects
to create a concurrent application:

• Low-level concurrency API: applications directly control
thread creation and management by instantiating Thread
each time the application needs

• Higher-level concurrency frameworks: they help abstract
thread management, applications do not explicitly create
thread objects

Defining and starting a Thread

• An application that creates an instance of Thread
must provide the code that will run in that thread.
There are two ways to do this:

1. Implement Runnable interface
• The Runnable interface defines a single method, run,

meant to contain the code executed in the thread. The
Runnable object is passed to the Thread constructor

2. Subclass Thread
• The Thread class itself implements Runnable, though its

run method does nothing. An application can subclass
Thread, providing its own implementation of run

Create Java Thread: Option1

• Implement java.lang.Runnable

• Single method: public void run()

• Write a Class that implements Runnable

• Create a Thread object with this Runnable

public class GreetingRunnable implements Runnable {

 public void run() {

 // code here executed by thread

 }

}

GreetingRunnable greetingRunnable = new GreetingRunnable();

Thread t = new Thread(greetingRunnable);

t.start();

Create Java Thread: Option2

• Instantiate a subclass of java.lang.Thread

• Override run method (must be overridden) to say what thread will be doing

• Call start() method to create a new thread. The start() method invokes run()

• Calling run() directly does not create a new thread !

public class GreetingThread extends Thread {

 public void run() {

 // code here executed by thread

 }

}

GreetingThread greetingThread = new GreetingThread();

greetingThread.start(); Creating thread object
does not start the thread!
Must call start() to actually
create and start the thread

Create Thread: Option1 vs Option 2

• Which of these idioms should you use?

• Option1 which employs a Runnable object
• is more general, because the Runnable object can subclass a class

other than Thread.

• Option2 which subclasses Thread:
• is easier to use in simple applications, but is limited by the fact that

your task class must be a descendant of Thread.

• Recommended: Option1 which separates the Runnable task
from the Thread object that executes the task.

• more flexible

• applicable to the higher-level thread management APIs

Joining Threads

• Common scenario: Main thread starts several worker
threads, then needs to wait for the worker’s results to be
available

• The join method allows one thread to wait for the
completion of another. If t is a Thread object whose thread
is currently executing,

• t.join();

• causes the current thread to pause execution until t's thread
terminates. Overloads of join allow the programmer to
specify a waiting period.

First Example: Greetings

class Hello implements Runnable {

 private final int externalID;

 public Hello(int externalID) {

 this.externalID = externalID;

 }

 @Override

 public void run() {

 System.out.printf("Thread %s with externalID=%d says Hello!\n",

 Thread.currentThread().getName(), externalID);

 }

First Example: Greetings (contd)
Thread[] threads = new Thread[NTHREADS];

 for (int i = 0; i < NTHREADS; ++i) {

 if (i % 2 == 0) threads[i] = new Thread(new Ciao(i));

 else threads[i] = new Thread(new Hello(i));

 }

 System.out.println("Thread objects have been created but not yet started");

 for (int i = 0; i < NTHREADS; ++i) {

 threads[i].start();

 }

 System.out.println("Wait to join threads ...");

 for (int i = 0; i < NTHREADS; ++i) {

 try {

 threads[i].join();

 } catch (InterruptedException e) {

 throw new RuntimeException(e);

 }

 }

 System.out.println("All threads joined!");

}

Source Code

• https://staff.cs.upt.ro/~ioana/apd/java/Greetings.java

https://staff.cs.upt.ro/~ioana/apd/java/Greetings.java

Synchronization Issues
synchronized

wait, notify, notifyAll

Shared Memory Between Threads

• Example: Shared Counter: Two threads increment the same
counter:

class Counter {

 private int value;

 public Counter(int value){

 this.value = value;

 }

 public void increment(){

 value++;

 }

 public void decrement(){

 value--;

 }

 public int getValue(){

 return value;

 }

}

class Incrementer implements Runnable {

 private Counter aCounter;

 private int repeats;

 public Incrementer(Counter aCounter, int repeats) {

 this.aCounter = aCounter;

 this.repeats = repeats;

 }

 @Override

 public void run() {

 for (int i=0; i<repeats; i++) {

 aCounter.increment();

 }

 }

}

public class WrongSharedCounter {

 private static int REPEATS=1000000;

 public static void main(String[] args) {

 Counter theCounter = new Counter(0);

 Thread t1 = new Thread(new Incrementer(theCounter, REPEATS));

 Thread t2 = new Thread(new Incrementer(theCounter, REPEATS));

 t1.start();

 t2.start();

 try {

 t1.join();

 t2.join();

 } catch (InterruptedException e) {

 throw new RuntimeException(e);

 }

 System.out.println("Counter value is "+theCounter.getValue());

 }

}

Shared Memory Between Threads

• Example: Shared Counter: Two threads increment the same
counter:

class Counter {

 private int value;

 public Counter(int value){

 this.value = value;

 }

 public void increment(){

 value++;

 }

 public void decrement(){

 value--;

 }

 public int getValue(){

 return value;

 }

}

class Incrementer implements Runnable {

 private Counter aCounter;

 private int repeats;

 public Incrementer(Counter aCounter, int repeats) {

 this.aCounter = aCounter;

 this.repeats = repeats;

 }

 @Override

 public void run() {

 for (int i=0; i<repeats; i++) {

 aCounter.increment();

 }

 }

}

Wrong! Needs
Mutual Exclusion!

Critical sections - Mutual exclusion

• When two or more threads read/write the same data
(shared objects), the programmer is responsible for avoiding
bad interleaving by explicit synchronization – mutual
exclusion!

• We know that mutual exclusion can be realized by locks

• In Java, all objects have an internal lock, called intrinsic
lock or monitor lock: every object can be used as a lock!

• Keyword: synchronized

 synchronized (object) {

 statement(s); // critical sections

 }

Using locks to protect shared value
class Counter {

 private int value;

 public Counter(int value){

 this.value = value;

 }

 public void increment(){

 synchronized (this) {

 value++;

 }

 }

 public void decrement(){

 synchronized (this) {

 value--;

 }

 }

 public int getValue(){

 synchronized (this) {

 return value;

 }

 }

}

The current object this is
used as a lock.

Two different threads
cannot access

concurrently the value
attribute of the same

object

Synchronized methods

• In Java, methods can be declared as synchronized:

• By default uses the this object as a lock

• A synchronized method aquires the object lock at the
start, runs to completion, then releases the lock

• This is useful for methods whose entire bodies are
critical sections

Using synchronized methods

class SynchronizedCounter {

 private int value;

 public SynchronizedCounter(int value){

 this.value = value;

 }

 public synchronized void increment(){

 value++;

 }

 public synchronized void decrement(){

 value--;

 }

 public synchronized int getValue(){

 return value;

 }

}

Synchronized methods
are equivalent with a
lock on the current

object.
Easier for this example.

When to use locks on objects instead
on synchronized methods?

class Counter {

 private int value;

 public Counter(int value){

 this.value = value;

 }

 public void increment(){

 synchronized (this) {

 value++;

 }

 System.out.println("did increment");

 }

}

}

Use locks instead of
synchronized method if

the method also
contains some non-

critical code!

Also
synchronized(object)

can be used if the
object lock is not

necessarily the this
object!

Source Code

• staff.cs.upt.ro/~ioana/apd/java/WrongSharedCounter.java

• staff.cs.upt.ro/~ioana/apd/java/CorrectSharedCounter1.java

• staff.cs.upt.ro/~ioana/apd/java/CorrectSharedCounter2.java

https://staff.cs.upt.ro/~ioana/apd/java/WrongSharedCounter.java
https://staff.cs.upt.ro/~ioana/apd/java/CorrectSharedCounter1.java
https://staff.cs.upt.ro/~ioana/apd/java/CorrectSharedCounter2.java

Coordinating actions of multiple
threads

• Guarded blocks: such blocks keep a check for a particular
condition before resuming the execution.

• Concept similar to Condition Variables in POSIX threads

• Object.wait() to suspend a thread

• Object.notify() to wake a thread up

wait(), notify(), notifyAll()

• Inter-thread communication allows threads to coordinate
and synchronize: wait, notify, and notifyAll methods

• May only be called when object is locked (e.g. inside
synchronized)

• wait() forces the current thread to enter a waiting state
until another thread calls notify() or notifyAll() on the same
object. To make this happen, the current thread must own
the lock of that object. During wait, lock is released.

• notify() wakes the highest-priority thread closest to
front of object’s internal queue

• notifyAll() wakes up all waiting threads. Threads non-
deterministically compete for access to object.

The Producer-Consumer
Problem
See also the previous discussion of this problem with POSIX
threads:
https://staff.cs.upt.ro/~ioana/apd/Synchronization.pdf

https://staff.cs.upt.ro/~ioana/apd/Synchronization.pdf

Producer-Consumer with
Bounded Buffer
• A number of Producers put items into a Shared Queue (a Buffer)

• A number of Consumers get items out of the Shared Queue

• All Producers and Consumers work concurrently

• The size of the Queue is fixed (there are a limited number of places in the
Queue = a Bounded Buffer)

Shared Queue
(Buffer with fixed
number of places)

Producer

Consumer

Puts in queue
Must wait if full

Gets from queue
Must wait if empty

Producer-Consumer with
Bounded Buffer
• Problems:

• If the Buffer is empty, Consumers must block until some item appear in
queue

• If the Buffer is full, Producers must block until some item is removed
from queue

• Several Producers or Consumers must not attempt to put or get items
from the queue at the same time (the classical mutual exclusion –
cannot have 2 threads increment the same head or tail index at the same
time)

Bunded Buffer Queue
Implementation
• Circular Array (Ring Buffer): an array exploited in a circular way: after the

last index, we consider that the next element follows at the first index

out: the index of the
Head of the Queue
(Consumers get
this element –
dequeue)

In: the index of the
Tail of the Queue
(Producers put
here - enqueue)

Bunded Buffer Queue
Implementation

• Initially: Buffer empty, in=out=0

• Enqueue: Put in buffer:
• b[in] = value;

• in = (in + 1) % BUFFER_SIZE;

• Test Buffer is Full:
• If ((in + 1) % BUFFER_SIZE == out)

• Dequeue: Get from buffer:
• value = b[out];

• out = (out + 1) % BUFFER_SIZE;

• Test Buffer is Empty:
• If (out == in)

BoundedBuffer Producer-Consumer

• Producer and consumer run indefinitely

• Producer adds items into a shared buffer, consumer
removes them out

• Buffer is bounded (has a limited capacity)

• Producer can add only if buffer is not full. If buffer is full,
Producer must wait until place is freed in buffer (a
Consumer eventually takes something out)

• Consumer can remove only if buffer is not empty. If buffer is
empty, Consumer must wait until some elements appear in
the buffer (a Producer eventually puts something in)

class BoundedBuffer {

 private final Long[] elements;

 private final int capacity;

 private int in, out;

 private int count;

 public BoundedBuffer(int capacity) {

 this.capacity = capacity;

 this.elements = new Long[capacity];

 in = 0;

 out = 0;

 count = 0;

 }

 public boolean isEmpty() { return (count == 0); }

 public boolean isFull() {return (count == capacity); }

 public void add(long value) {

 elements[in] = value;

 in = (in + 1) % capacity; count++;

 }

 public long remove() {

 long v = elements[out];

 out = (out + 1) % capacity; count--;

 return v;

 }

}

A simple, bounded buffer that

is not thread-safe - The buffer

does not perform its own

synchronization

It works as a circular buffer

class Producer extends Thread {

 private final BoundedBuffer buffer;

 public Producer(BoundedBuffer buffer) {

 this.buffer = buffer;

 }

 @Override

 public void run() {

 long number = 0;

 while (true) {

 number = … // … produce a value

 synchronized (buffer) {

 while (buffer.isFull()) { //needs while, not if!!

 try {

 buffer.wait(); //producer is blocked

 } catch (InterruptedException e) {

 throw new RuntimeException(e);

 }

 }

 buffer.add(number);

 buffer.notifyAll(); // producer notifies blocked consumers

 }

 }

 }

}

class Consumer extends Thread {

 private final int id;

 private final BoundedBuffer buffer;

 public Consumer(int id, BoundedBuffer buffer) {

 this.id = id;

 this.buffer = buffer;

 }

 @Override

 public void run() {

 long number;

 while (true) {

 synchronized (buffer) {

 while (buffer.isEmpty()) { // need a while loop, not if !!!

 try {

 buffer.wait(); // consumer is blocked

 } catch (InterruptedException e) {

 throw new RuntimeException(e);

 }

 }

 number = buffer.remove();

 buffer.notifyAll(); // consumer notifies blocked producers

 }

 performLongRunningComputation(number);

 }

 }

Why do we need loops with wait/notify

• Recall condition variables with POSIX threads: the same reason:
spurious wake-ups!

• Suppose that Consumer uses an if:

• if (buffer.isEmpty())
 buffer.wait();

• The problem is that the consumer can return from a wait() call for
reasons other than being notified (e.g. due to a thread interrupt), or
because different consumers have different conditions

• If we do not recheck the isEmpty() condition upon return from wait, we
do not know why the thread returned from wait()

Source Code

• staff.cs.upt.ro/~ioana/apd/java/ProducerConsumer.java

https://staff.cs.upt.ro/~ioana/apd/java/ProducerConsumer.java

ThreadSafe Datastructures.
Concurent Collections.

ThreadSafe Blocking BoundedBuffer

• We can make the BoundedBuffer threadsafe and blocking,
by moving the synchronization issues from Producer and
Consumer to the methods add() and remove() of the buffer

• In this case, the Producer and Consumer working with a
BlockingBoundedBuffer do not need to address any
synchronization issues!

class BlockingBoundedBuffer {

// … same attributes …

 public synchronized boolean isEmpty() { return (count == 0); }

 public synchronized boolean isFull() { return (count == capacity); }

 private void _add(long value) {

 elements[in] = value;

 in = (in + 1) % capacity;

 count++;

 }

 public synchronized void add(long value) {

 while (this.isFull()) {

 try {

 this.wait();

 } catch (InterruptedException e) {

 throw new RuntimeException(e);

 }

 }

 _add(value);

 this.notifyAll();

 }

class Producer extends Thread {

 private final BlockingBoundedBuffer buffer;

 public Producer(BlockingBoundedBuffer buffer) {

 this.buffer = buffer;

 }

 private long produceNumber() {

 // produce and return a value

 }

 @Override

 public void run() {

 long number = 0;

 while (true) {

 number = produceNumber();

 //synchronization is handled by the buffer

 buffer.add(number);

 }

 }

}

Source Code

• https://staff.cs.upt.ro/~ioana/apd/java/BlockingArrayProdCons.java

https://staff.cs.upt.ro/~ioana/apd/java/BlockingArrayProdCons.java

Java Synchronized Collections

• Two ways:
1. Thread-safe collection wrappers via static methods in

the Collection class

2. Package java.util.concurrent contains collections that
are optimized for being used as threadsafe by multiple
threads (more efficient than synchronized wrapper on
standard collection)

Concurrent Collections

• Interface BlockingQueue: a ready-to-use synchronized
Buffer

• Class ArrayBlockingQueue

• Class LinkedBlockingQueue

• Class PriorityBlockingQueue

• Class ConcurrentHashMap: get and put operations block
access to a specific element but do NOT block access to the
entire data structure. In other words, two or more threads
can access it simultaneously.

AtomicInteger

• java.util.concurrent.atomic.AtomicInteger

• ensures atomic operations on integer variables

• Example: updating a shared counter: a compound
operation which involves 2 steps:

• Read the existing value from memory

• Update the new value to memory

• With AtomicInteger the update operation is performed
in a single atomic operation

• AtomicInteger is implemented using the C-A-S
(CompareAndSwap or CompareAndSet) operation which is a
primitive CPU level operation available at the hardware level

Task pools
Executor Framework

ForkJoin Framework

Threads vs Tasks

• Cassical approach: one thread per task. When the
programmer creates a parallel task, the
programmer also explicitly creates a new thread

• Thread.start(), Thread.join()

• Task-parallel (Task pool) approach: the
programmer specifies parallel tasks (tasks that
could be executed in parallel) and these tasks are
executed (scheduled) on a number of threads that
are available.

• Similar with OpenMP Tasking!

The Executor Framework

• The Executor Framework: an abstraction layer for
managing the execution of tasks asynchronously in a
multithreaded environment

• It decouples task submission from task execution!
• Programmers specify what can be executed

concurrently rather than how it should be executed
• Allows control of Thread resources: a fixed number of

threads are in a thread pool and only these threads are
used

• Threads submit Tasks to a ThreadPoolExecutor, which
choses Tasks and schedules them for execution to
Threads

ExecutorService Manages Tasks

Using ExecutorService

• User submits tasks to ExecutorService

• Tasks can be:
• Runnable: task does not return a result

• Task executes method void run()of Runnable

• Callable<T>: task returns a result of type T
• Task executes method T call()of Callable<T>

• The submit method returns a Future<?> or
Future<T> object, which can be used to retrieve the
Callable return value and to manage the status of both
Callable and Runnable tasks

QuickSort - Serial version

class SerialQuicksort {

 public static void sort(int[] a) {

 sort(a, 0, a.length - 1);

 }

 public static void sort(int[] a, int left, int right) {

 if (left < right) {

 int pivotIndex = QuicksortUtils.partition(a, left, right);

 sort(a, left, pivotIndex - 1);

 sort(a, pivotIndex + 1, right);

 }

 }

}

QuickSort – Parallelization idea

class SerialQuicksort {

 public static void sort(int[] a) {

 sort(a, 0, a.length - 1);

 }

 public static void sort(int[] a, int left, int right) {

 if (left < right) {

 int pivotIndex = QuicksortUtils.partition(a, left, right);

 sort(a, left, pivotIndex - 1);

 sort(a, pivotIndex + 1, right);

 }

 }

}

Main idea: do
the two

recursive calls in
parallel!

If we create a thread
for every recursive

call, system gets
flooded. Create a

TASK instead

QuickSort – Parallel with Executor

Int[] a = ArrayUtils.generateArray(arraySize);

ExecutorService tpe = Executors.newFixedThreadPool(threadNum);

AtomicInteger inQueue = new AtomicInteger(0);

inQueue.incrementAndGet();

tpe.submit(new QuicksortRunnable(a, tpe, inQueue));

Create a Pool and
put the first task

(corresponding to
the first call of the
recursive function)

into the pool.

inQueue: keeps track of
number of tasks in pool,

in order to shut down
when finished!

class QuicksortRunnable implements Runnable {

 int[] a;

 int low;

 int high;

 final int SIZELIMIT = 1000;

 ExecutorService tpe;

 AtomicInteger inQueue;

 public QuicksortRunnable(int[] a, ExecutorService tpe, AtomicInteger inQueue) {

 this(a, 0, a.length - 1, tpe, inQueue);

 }

 public QuicksortRunnable(int[] a, int low, int high, ExecutorService tpe,

 AtomicInteger inQueue) {

 this.a = a;

 this.low = low;

 this.high = high;

 this.tpe = tpe;

 this.inQueue=inQueue;

 }

@Override

public void run() {

 if (low < high) {

 if (high - low < SIZELIMIT) {

 SerialQuicksort.sort(a, low, high);

 } else {

 int pivotIndex = QuicksortUtils.partition(a, low, high);

 QuicksortRunnable t1 = new QuicksortRunnable(a, low, pivotIndex - 1, tpe, inQueue);

 inQueue.incrementAndGet();

 tpe.submit(t1);

 QuicksortRunnable t2 = new QuicksortRunnable(a, pivotIndex + 1, high, tpe, inQueue);

 inQueue.incrementAndGet();

 tpe.submit(t2);

 }

 }

 int left = inQueue.decrementAndGet();

 if (left == 0) {

 tpe.shutdown();

 }

}

Must explicitly keep track of
number of tasks in pool and
shut down when finished,

otherwise program will not
terminate!

Example: Recursive Fibonacci

class SerialFibonacci {

 public static long fib(int n){
 if (n < 2)
 return n;
 long x1 = fib(n-1);
 long x2 = fib(n-2);
 return x1 + x2;
 }

 public static void main(String[] args) {
 int n=10;
 System.out.println("Fibo "+n+" "+fib(n));
 }
}

Fibonacci Parallelization with Tasks

 public static long fib(int n){
 if (n < 2)
 return n;
 spawn task fib(n-1);
 spawn task fib(n-2);
 wait for tasks to complete, get task results x1 x2
 return x1+x2;
 }

class FibonacciTask implements Callable<Long> {

 private final int n;

 private final ExecutorService executor;

 public FibonacciTask(int n, ExecutorService executor) {

 this.n = n;

 this.executor = executor;

 }

 @Override

 public Long call() throws InterruptedException, ExecutionException {

 return fib(n, executor); // Call the fib method recursively

 }

 private long fib(int n, ExecutorService executor) throws InterruptedException,

 ExecutionException {

 if (n < 2) {

 return Long.valueOf(n);

 }

 FibonacciTask fib1 = new FibonacciTask(n - 1, executor);

 FibonacciTask fib2 = new FibonacciTask(n - 2, executor);

 Future<Long> result1 = executor.submit(fib1);

 Future<Long> result2 = executor.submit(fib2);

 return result1.get() + result2.get();

 }

}

public static void main(String[] args) throws ExecutionException,

 InterruptedException {

 // Create a fixed thread pool with 5 threads

 ExecutorService executor = Executors.newFixedThreadPool(5);

 int n = 4; // call fib(4)

 Callable<Long> t = new FibonacciTask(n, executor);

 Future<Long> future = executor.submit(t);

 Long result = future.get() ;

 System.out.println("Fibonacci number #" + n + " is " + result);

 executor.shutdown();

}

public static void main(String[] args) throws ExecutionException,

 InterruptedException {

 // Create a fixed thread pool with 4 threads

 ExecutorService executor = Executors.newFixedThreadPool(4);

 int n = 4; // call fib(4)

 Callable<Long> t = new FibonacciTask(n, executor);

 Future<Long> future = executor.submit(t);

 Long result = future.get() ;

 System.out.println("Fibonacci number #" + n + " is " + result);

 executor.shutdown();

}

This version will block
because the tasks run

out of available
threads!

Task graph for fib(4)

https://spcl.ethz.ch/Teaching/2020-pp/lectures/PP-L06-MODELS.pdf

public static void main(String[] args) throws ExecutionException,

 InterruptedException {

 // Create a workstealing pool with 4 threads

 ExecutorService executor = Executors.newWorkStealingPool(4);

 int n = 20; // call fib(20)

 Callable<Long> t = new FibonacciTask(n, executor);

 Future<Long> future = executor.submit(t);

 Long result = future.get() ;

 System.out.println("Fibonacci number #" + n + " is " + result);

 executor.shutdown();

}

No more blocking!
The WorkStealingPool allows

its threads to create new
tasks and suspend their

current tasks when they wait
for their child tasks to finish

ForkJoin Framework
• is designed to meet the needs of divide-and-conquer fork-

join parallelism

Fork-Join Framework

• The fork/join framework is an implementation of the ExecutorService
interface.

• It is designed for work that can be broken recursively into pieces

• As with any ExecutorService implementation, the fork/join framework
distributes tasks to worker threads in a thread pool.

• The fork/join framework is distinct because it uses a work-stealing
algorithm. Worker threads that run out of things to do can steal tasks from
other threads that are still busy.

• The center of the fork/join framework is the ForkJoinPool class, an
extension of the AbstractExecutorService class.

• ForkJoinPool can execute ForkJoinTask tasks

• pool.invoke(task) starts task, in current thread

• task.fork() – creates a new task and submits it to pool

• task.join() – waits for task to be finished

• ForkJoinTask subclasses:
• RecursiveTask - can return a result
• RecursiveAction

QuickSort - Serial version

class SerialQuicksort {

 public static void sort(int[] a) {

 sort(a, 0, a.length - 1);

 }

 public static void sort(int[] a, int left, int right) {

 if (left < right) {

 int pivotIndex = QuicksortUtils.partition(a, left, right);

 sort(a, left, pivotIndex - 1);

 sort(a, pivotIndex + 1, right);

 }

 }

}

QuickSort – Parallelization idea

class SerialQuicksort {

 public static void sort(int[] a) {

 sort(a, 0, a.length - 1);

 }

 public static void sort(int[] a, int left, int right) {

 if (left < right) {

 int pivotIndex = QuicksortUtils.partition(a, left, right);

 sort(a, left, pivotIndex - 1);

 sort(a, pivotIndex + 1, right);

 }

 }

}

Main idea: do
the two

recursive calls in
parallel!

If we create a
thread for every

recursive call,
system gets

flooded. Create a
TASK instead

QuickSort – parallel with ForkJoin

ForkJoinPool fjPool = new ForkJoinPool(threadNum);

ForkJoinQuicksortTask forkJoinQuicksortTask =

 new ForkJoinQuicksortTask(a, 0, a.length - 1);

fjPool.invoke(forkJoinQuicksortTask);

Create a Pool and
put the first task

(corresponding to
the first call of the
recursive function)

into the pool

class ForkJoinQuicksortTask extends RecursiveAction {

 int[] a;

 int low, high;

 public ForkJoinQuicksortTask(int[] a) {

 this(a, 0, a.length - 1);

 }

 public ForkJoinQuicksortTask(int[] a, int low, int high) {

 this.a = a; this.low = low; this.high = high;

 }

 protected void compute() {

 if (low < high) {

 int pivotIndex = QuicksortUtils.partition(a, low, high);

 ForkJoinQuicksortTask t1 = new ForkJoinQuicksortTask(a, low, pivotIndex - 1);

 ForkJoinQuicksortTask t2 = new ForkJoinQuicksortTask(a, pivotIndex + 1, high);

 t1.fork();

 t2.fork();

 t1.join();

 t2.join();

 }

 }

}

Basic solution
with tasks

Fork() does not
create a Thread,

but a Task!

class ForkJoinQuicksortTask extends RecursiveAction {

 int[] a;

 int low, high;

 final int SIZELIMIT = 1000;

 public ForkJoinQuicksortTask(int[] a) {

 this(a, 0, a.length - 1);

 }

 public ForkJoinQuicksortTask(int[] a, int low, int high) {

 this.a = a; this.low = low; this.high = high;

 }

 protected void compute() {

 if (low < high) {

 if (high - low < SIZELIMIT) {

 SerialQuicksort.sort(a, low, high);

 } else {

 int pivotIndex = QuicksortUtils.partition(a, low, high);

 ForkJoinQuicksortTask t1 = new ForkJoinQuicksortTask(a, low, pivotIndex - 1);

 ForkJoinQuicksortTask t2 = new ForkJoinQuicksortTask(a, pivotIndex + 1, high);

 t1.fork();

 t2.compute();

 t1.join();

 }

 }

 }

}

Performance
Improvements!

Quicksort Performance

N=1M N=2M N=10M N=20M N=100M

Serial Ts=84 Ts=172 Ts=892 Ts=1903 Ts=10011

Parallel
with
Executor

Tp=30
S=2.8

Tp=63
S=2.73

Tp=201
S=4.43

Tp=404
S=4.71

Tp=1988
S=5.03

Parallel
with
ForkJoin

Tp=21
S=4

Tp=39
S=4.41

Tp=178
S=5.01

Tp=360
S=5.28

Tp=2003
S=4.99

8 threads/8 cores

Source Code

• https://staff.cs.upt.ro/~ioana/apd/java/QuickSortVariants.java

• https://staff.cs.upt.ro/~ioana/apd/java/QuicksortUtils.java

• https://staff.cs.upt.ro/~ioana/apd/java/ArrayUtils.java

• See also: previous example of parallel Quicksort with OpenMP

• https://staff.cs.upt.ro/~ioana/apd/omp/omp_qsort.c

https://staff.cs.upt.ro/~ioana/apd/java/QuickSortVariants.java
https://staff.cs.upt.ro/~ioana/apd/java/QuicksortUtils.java
https://staff.cs.upt.ro/~ioana/apd/java/ArrayUtils.java
https://staff.cs.upt.ro/~ioana/apd/omp/omp_qsort.c

Example: Recursive Fibonacci

class SerialFibonacci {

 public static long fib(int n){
 if (n < 2)
 return n;
 long x1 = fib(n-1);
 long x2 = fib(n-2);
 return x1 + x2;
 }

 public static void main(String[] args) {
 int n=10;
 System.out.println("Fibo "+n+" "+fib(n));
 }
}

Fibonacci Parallelization with Tasks

 public static long fib(int n){
 if (n < 2)
 return n;
 spawn task fib(n-1);
 spawn task fib(n-2);
 wait for tasks to complete, get task results x1 x2
 return x1+x2;
 }

Task graph for fib(4)

https://spcl.ethz.ch/Teaching/2020-pp/lectures/PP-L06-MODELS.pdf

public class FibonacciCalculator extends RecursiveTask<Long> {

 private final int n;

 public FibonacciCalculator(int n) {

 this.n = n;

 }

 @Override

 protected Long compute() {

 if (n <= 1) {

 return (long) n;

 } else {

 FibonacciCalculator fib1 = new FibonacciCalculator(n - 1);

 fib1.fork();

 FibonacciCalculator fib2 = new FibonacciCalculator(n - 2);

 fib2.fork();

 return fib2.join() + fib1.join();

 }

 }

public static void main(String[] args) {

 ForkJoinPool forkJoinPool = new ForkJoinPool();

 FibonacciCalculator fibonacciCalculator = new FibonacciCalculator(30);

 long result = forkJoinPool.invoke(fibonacciCalculator);

 System.out.println("Result: " + result);

}

	Slide 1: Java Threads
	Slide 2: Bibliography
	Slide 3: Threads and Parallelism in Java
	Slide 4: Java Threads
	Slide 5: Thread Objects
	Slide 6: Defining and starting a Thread
	Slide 7: Create Java Thread: Option1
	Slide 8: Create Java Thread: Option2
	Slide 9: Create Thread: Option1 vs Option 2
	Slide 10: Joining Threads
	Slide 11: First Example: Greetings
	Slide 12: First Example: Greetings (contd)
	Slide 13: Source Code
	Slide 14: Synchronization Issues
	Slide 15: Shared Memory Between Threads
	Slide 16
	Slide 17: Shared Memory Between Threads
	Slide 18: Critical sections - Mutual exclusion
	Slide 19: Using locks to protect shared value
	Slide 20: Synchronized methods
	Slide 21: Using synchronized methods
	Slide 22: When to use locks on objects instead on synchronized methods?
	Slide 23: Source Code
	Slide 24: Coordinating actions of multiple threads
	Slide 25: wait(), notify(), notifyAll()
	Slide 26: The Producer-Consumer Problem
	Slide 27: Producer-Consumer with Bounded Buffer
	Slide 28: Producer-Consumer with Bounded Buffer
	Slide 29: Bunded Buffer Queue Implementation
	Slide 30: Bunded Buffer Queue Implementation
	Slide 31: BoundedBuffer Producer-Consumer
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Why do we need loops with wait/notify
	Slide 36: Source Code
	Slide 37: ThreadSafe Datastructures. Concurent Collections.
	Slide 38: ThreadSafe Blocking BoundedBuffer
	Slide 39
	Slide 40
	Slide 41: Source Code
	Slide 42: Java Synchronized Collections
	Slide 43: Concurrent Collections
	Slide 44: AtomicInteger
	Slide 45: Task pools
	Slide 46: Threads vs Tasks
	Slide 47: The Executor Framework
	Slide 48: ExecutorService Manages Tasks
	Slide 49: Using ExecutorService
	Slide 50: QuickSort - Serial version
	Slide 51: QuickSort – Parallelization idea
	Slide 52: QuickSort – Parallel with Executor
	Slide 53
	Slide 54
	Slide 55: Example: Recursive Fibonacci
	Slide 56: Fibonacci Parallelization with Tasks
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Task graph for fib(4)
	Slide 61
	Slide 62: ForkJoin Framework
	Slide 63: Fork-Join Framework
	Slide 64: QuickSort - Serial version
	Slide 65: QuickSort – Parallelization idea
	Slide 66: QuickSort – parallel with ForkJoin
	Slide 67
	Slide 68
	Slide 69: Quicksort Performance
	Slide 70: Source Code
	Slide 71: Example: Recursive Fibonacci
	Slide 72: Fibonacci Parallelization with Tasks
	Slide 73: Task graph for fib(4)
	Slide 74
	Slide 75

