Code: analysis, bugs, and security
supported by Bitdefender

Marius Minea

marius@cs.upt.ro

28 September 2016

mailto:marius@cs.upt.ro

Course goals

improve skills: write robust, secure code

understand program internals

learn about security vulnerabilities, detection, prevention
use tools to reverse engineer and analyze code

perhaps in the future: analyze and counter malware

Code, data, stack, ...

We know the basics:
logically, the program has different memory areas:
code
(global) data
stack (for function calls)
heap (for dynamic allocation)

What can we find out about them by running a program ?
(look at various addresses printed by progsegs.c)

Program addresses, at first sight

Addresses are in different numeric ranges

Recursive call: new copies for each instance
can determine size of stack frame

Total address range (from code to stack) is HUGE
orders of magnitude more than computer memory
= these are logical (virtual), not physical addresses

Running the program repeatedly, addresses differ
Address Space Layout Randomization
estimate: how many bits vary ?
protects against attacks that need to know address values

Typical memory layout of C programs

high address command-line arguments
and environment variables

stack

uninitialized data initialized to
{bss) zero by exec

initialized data read from

program file
text by exec

low address

Figure: http://www.geeksforgeeks.org/memory-layout-of-c-program/

http://www.geeksforgeeks.org/memory-layout-of-c-program/

Typical stack frame layout

entry's Frame

Main()'s Frame

void £2(...) {

int £1(...) {
£2(...);

}

int main() {
o= 10000,

}

f()'s Frame

2()'s Frame

Return Address (entry)

NULL (no previous frame)

Saved Registers
used in main()

Frame Ptr

Main()'s local variables

Saved parameters
tofi()

Return Address (main+offset)

Main()'s frame pointer

Saved Registers
used in f1()

f()'s Frame Ptr

F1()'s local variables

Saved parameters
10 12()

Return Address (f1+offset)

f1()'s frame pointer

http://www.backerstreet

2()'s Frame Ptr

.com/red/stack_frames.htm

http://www.backerstreet.com/red/stack_frames.htm

Virtual memory in a nutshell

A mapping from logical to physical addresses
supported by processor hardware (memory management unit) and
operating system

— provides abstraction (program need not worry about size and
usage of physical memory)
virtual address space can be larger than physical memory
memory pages transferred to/from secondary memory (disk) as
needed

— provides protection
can set up permissions for memory segments
memory space of one process protected from another
but: can also set up sharing

&/4_;,.4”‘ Virtual Memory That is
"" Larger Than Physical Memory

page 0

page 1

page 2 /\
e

m B 0
\ ~NmEE

EEE
EEE

EEE
P -

[\

page v physical
” memory
virtual
memory

A

Operating System Concepts — 8 Edition 9.5 Silberschatz, Galvin and Gagne ©2009

2
@iﬁ y Address Translation

1]
] 1

Virtual Address I Physical Address 1
1 .]

Page#| Offset | 1
1 1
T 1)
1]
¥ Register 1
1 1
] 1
N Page Table bt 1
] 1
: ' OffsetI Page
N 1 Frame
1 1
1]
] [Frome# |— 1
1 1
1]
1]
] 1 Y
] 1
1]

Program] Paging Mechanism 1 Main Memory

1]

Figure 8.3 Address Translation in a Paging System

Figure: W. Stallings, Operating Systems, 6th ed.

Arrays and pointers

What difference (if any) is there between
char s[] = "test"; and char *p = "test"; 7

Arrays and pointers

What difference (if any) is there between
char s[] = "test"; and char *p = "test"; 7

Array: char s[] = "test"; s[0] is ’t’, s[4] is >\O’ etc.
s is a constant address (char *), not a variable in memory
CANNOT assign s = ... but may assign s[0] = ’f’

sizeof (s) is 5 * sizeof (char)

&s is s, but different type, address of 5-char array: char (%) [5]

‘sizeof (entire array) is not strlen (up to \O)‘

Arrays and pointers

What difference (if any) is there between
char s[] = "test"; and char *p = "test"; 7

Array: char s[] = "test"; s[0] is ’t’, s[4] is >\O’ etc.
s is a constant address (char *), not a variable in memory
CANNOT assign s = ... but may assign s[0] = ’f’

sizeof (s) is 5 * sizeof (char)

&s is s, but different type, address of 5-char array: char (%) [5]

‘sizeof (entire array) is not strlen (up to \O)‘

Pointer: char *p = "test"; pl0l is ’t?, p[4] is *\0’ (same)
p is a variable of address type (char *), has a memory location
CANNOT assign = ("test" is a string constant)
cando p = s; thenp[0] = ’£f’; can assignp = "ana";
sizeof (p) is sizeof (char *) &p is NOT p

= WRONG: seanf("%4s"—&p)>+ RIGHT: scanf("%4s", p);

(if p is valid address and has room)

Arrays and pointers

The name of an array is a constant address

Can declare int a[LEN], *pa; and assign pa = a;

Similar: a and pa have same type: int *

But: pa is a variable = uses memory; can assign pa = addr
a is a constant (array has fixed address) can't assign a—=—adér
a_a[0] a[1] a[2] a[3] a[4] a[5] pa

address 5C0| int al[6];

int *pa = a;
(hex) ¥5¢g 5D0 5E0

*a and *pa: indirections with different operations in machine code:
*a references object from constant address (direct addressing)

*pa must first get value of variable pa (an address), loading it from
the constant address &pa) then dereference it (indirect addressing)

Binary data representation

Suppose we want to process a bitmap file
Bitmap file header

This block of bytes is at the start of the file and is used to identify the file. A typical application reads this
block first to ensure that the file is actually a BMP file and that it is not damaged. The first 2 bytes of the
BMP file format are the character "B" then the character "M" in ASCIl encoding. All of the integer values
are stored in little-endian format (i.e. least-significant byte first).

Offset Offset

hex | dec Size Purpose

The header field used to identify the BMP and DIB file is 0x42 0x4D in
hexadecimal, same as BM in ASCII. The following entries are possible:

BM — Windows 3.1x, 95, NT, ... efc.
BA — 0S/2 struct bitmap array

Cl - 08/2 struct color icon

CP — 0S/2 const color pointer

IC — OS/2 struct icon

PT — OS/2 pointer

00 0 2 bytes

02 2 4 bytes | The size of the BMP file in bytes
06 6 2 bytes | Reserved; actual value depends on the application that creates the image
08 8 2 bytes | Reserved; actual value depends on the application that creates the image

0A 10 4 bytes The offset, i.e. starting address, of the byte where the bitmap image data (pixel
array) can be found.

https://en.wikipedia.org/wiki/BMP_file_format

https://en.wikipedia.org/wiki/BMP_file_format

Bitmap file format (cont'd)

Offset
(hex)

OE
12
16
1A

1Cc

1E

22

26
2A
2E

32

Offset
(dec)

14
18
22
26

28

30

34

38
42
46

50

(bytes)

4

NN

Windows BITMAPINFOHEADER!"!

the size of this header (40 bytes)

the bitmap width in pixels (signed integer)
the bitmap height in pixels (signed integer)
the number of color planes (must be 1)

the number of bits per pixel, which is the color depth of the image. Typical
values are 1, 4, 8, 16, 24 and 32.

the compression method being used. See the next table for a list of
possible values

the image size. This is the size of the raw bitmap data; a dummy 0 can be
given for Bl_RGB bitmaps.

the horizontal resolution of the image. (pixel per meter, signed integer)
the vertical resolution of the image. (pixel per meter, signed integer)
the number of colors in the color palette, or 0 to default to 2"

the number of important colors used, or 0 when every color is important;
generally ignored

To work with ints that are exactly 2 bytes, 4 bytes, etc.,
need fixed-width integers: stdint.h (since C99)
int8 t, int16_t, int32_t, int64 _t,

uint8_t, uintl16_t, uint32_t, uint64_t

Big-endian and little-endian

BMP specification: “all integers are stored in little-endian format”

little-endian: least-significant byte first
0x12345678 is stored as 0x78 0x56 0x34 0x12
Intel x86

big-endian: most-significant byte first
0x12345678 is stored as 0x12 0x34 0x56 0x78
Mac, PPC, Sun, Internet (also called 'network byte order’)

Make sure values are read/written from/to file in correct byte order

We'll use: Program analysis infrastructures

Allow program representation and manipulation
at source or binary level

Built-in analyses + API to write your own

LLVM: one of the most widely used, complete compiler toolchain

BAP (D. Brumley, CMU): OCaml + Python bindings
team won DARPA Cyber Grand Challenge 2016

angr (UC Santa Barbara): Python framework

CIL (G. Necula, Berkeley): OCaml + Perl
outputs instrumented C code

https://angr.io

Example of source instrumentation with CIL
Analysis library provides a data type to represent statements

type stmtkind =
| Instr of instr list (* straight-line instructions *)

| Return of exp option * location (* The return statement. *)

| Goto of stmt ref * location (x A goto statement. *)

| Break of location (% break to end of nearest loop/switch *
| Continue of location (* continue to start of nearest loop *)
| If of exp * block * block * location (* A conditional. *)

| Switch of exp * block * (stmt list) * location

| Loop of block * location * (stmt option) * (stmt option)

(* a while(1) loop with continue and break *)
| Block of block (* block of statements. *)

C representation in CIL (cont'd.)

type instr =
| Set of lval * exp * location (* An assignment. *)
| Call of lval option * exp * exp list * location (* fci

and lval = lhost * offset (* base address + field/index *)

and lhost =
| Var of varinfo (* base is a variable *)
| Mem of exp (* access through a pointer *)

To instrument code, traverse statements (control flow graph),
identify interesting statements, insert new ones.
e.g. can log all/some memory writes

Fast compiler-supported instrumentation
Address sanitizer (with recent clang / gcc versions)
#include <stdio.h>

#include <stdlib.h>
#include <string.h>

int main(void) A{
char *p = malloc(20);
strcpy(p, "test");

puts(p);

free(p);

pl1]l = ’a’; // wrong
}
% gcc -fsanitize=address usefree.c
% ./a.out

==31741==ERROR: AddressSanitizer: heap-use-after-free on
address 0x60300000efel at pc 0x0000004008c6 bp
0x7ffeef2227b0 sp Ox7ffeef2227a8

WRITE of size 1 at 0x60300000efel thread TO

#0 0x4008c5 in main /home/marius/curs/bitdef/usefree.c:11

Software security: increasingly automated

automated vulnerability detection + exploit generation

comparison of old (buggy) + patched program versions
= exploit generation

"compilers’ for return-oriented programming exploits

A good read (insights into research advances):

G. Vigna et al., (State of) The Art of War: Offensive Techniques
in Binary Analysis, IEEE Security & Privacy, 2016

