
Code: analysis, bugs, and security
supported by Bitdefender

Assembly Language

Marius Minea
marius@cs.upt.ro

5 October 2016

mailto:marius@cs.upt.ro

Computing is about abstraction

Many high-level languages with scores of features

Processor hardware: much simpler, less variation

Compiler must bridge this gap

Towards assembly: three-address code

Expressions can be arbitrarily complex

Most often, we have simple expressions like:
x = 2 * y or z = x + y
two operands, one result

three-address code:
(at most) three addresses (variables, pointers) in instruction

Can do source-to-source transformation of C to three-address code

Why registers

Is this enough?

Processor instructions could have an opcode (for basic operations)
+ (at most) three addresses.

You might do this for a virtual machine in a compiler class project
Why not in a real processor?

speed: memory access is slow

code size: three arbitrary addresses make a long instruction

Why registers

Is this enough?

Processor instructions could have an opcode (for basic operations)
+ (at most) three addresses.

You might do this for a virtual machine in a compiler class project
Why not in a real processor?

speed: memory access is slow

code size: three arbitrary addresses make a long instruction

Instruction set design

From early simple processors to CISC to RISC

Complex Instruction Set Computer
powerful instructions, complex addressing modes
multi-step operations in same instruction

Reduced Instruction Set Computer
uniform short instructions (one word)
general-purpose registers (with same role)
simple addressing, load/store architecture
(separate memory access and arithmetic)

ultimately, seems microarchitecture is more relevant

x86 Architecture: Registers

On 64-bit architectures: extended registers: rax, rbx, etc.

http://www.cs.virginia.edu/˜evans/cs216/guides/x86.html

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

Opcodes and operands

Instructions have 1 to several bytes

Opcode: says what instruction does
1-byte instructions: ret, push/pop/incdec reg

Operands:
register (8, 16 or 32-bit) + 64
constant (8, 16 or 32-bit) + 64
(contents of) memory address

Size directives

For a memory access, must indicate amount of data read/written
1, 2, 4, 8 bytes

In C, given by the type of the pointer: char *, int16_t *, etc.

In assembly, must specify explicitly ⇒ different instructions

mov BYTE PTR [ebx], 7
mov WORD PTR [ebx], 7
mov DWORD PTR [ebx], 7

Stack: push and pop

Simplest memory transfer instructions

push: first decrement, then put value on stack

sp -= 4 // for 32-bit arch
[sp] = value

pop: take value from stack pointer, then increment

value = [sp]
sp += 4 // for 32-bit arch

Memory transfer (data movement) instructions

mov eax, [ebx] ; [] = contents of address w/ given value
mov [var], ebx ; var = 32-bit const addr
mov eax, [esi-4]
mov [esi+eax], cl ; register cl = one byte
mov edx, [esi+4*ebx]

Examples: http://www.cs.virginia.edu/˜evans/cs216/guides/x86.html

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

Basic Arithmetic & Bitwise ops

Arithmetic:
add, sub, mul, div
imul, idiv (signed)
inc, dec

Logical (bitwise): and, or, xor, not

xor bx, bx // short way to zero a register

Shifting: by constant bitcount, or value or reg cl
shl [mem], 3
shr dx, cl

All of these affect flags

The Flags Register

CF (carry): set when unsigned result does not fit
OF (overflow): set when signed result does not fit
SF (sign): arithmetic / logic result is negative
ZF (zerox): arithmetic / logic result is zero

AC (auxiliary carry): from bit 3 to bit 4 in 8-bit operand
PF (parity): of low-order byte: 1 if even number of 1 bits

Calling conventions

When calling a function, several options to consider:

Where to pass arguments ? (stack or registers?)

Argument passing order (from left or from right)?

Who cleans up the stack? (caller or callee)

Who saves registers? (caller or callee)

cdecl convention

32-bit x86, many compilers, Unix-like systems

args passed on stack, right to left (allows varargs)
result returned in eax

caller saves eax, ecx, edx, callee saves rest
caller cleans up stack

Compile to assembly (cc could be gcc, clang, etc.)
cc -S -masm=intel file.c
Extra options: -O2 to optimize

-m32 compiles to 32 bits on 64-bit system

http://www.cs.virginia.edu/˜evans/cs216/guides/x86.html

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

Other calling conventions

stdcall: Microsoft
args also right to left, callee cleans up stack

cannot have variable-length arguments

syscall
like cdecl but does not save AX, CX, DX

x86-64 calling conventions

64-bit arch has 8 more registers ⇒ can use to pass values

System V AMD64 ABI
first 6 args passed in rdi, rsi, rdx, rcx, r8, r9
return value in rax and rdx

Recognizing function prologues / epilogues

Important in reverse engineering

May not know all entry points

May not be able to follow all function calls
e.g. indirect calls, through pointers in a table

Standard prologues/epilogues help disassembler detect functions

Control flow: jumps and calls

jmp address
call address

Should address be absolute or relative to the progam counter?

relative: important to have relocatable code
(can load at any address in memory)

Absolute jump / call instructions also exist.

Control flow: jumps and calls

jmp address
call address

Should address be absolute or relative to the progam counter?

relative: important to have relocatable code
(can load at any address in memory)

Absolute jump / call instructions also exist.

Comparison operators

cmp op1, op2

like (signed) subtraction, but does not change left operand

test op1, op2

like bitwise AND, but does not change left operand

both set flags ⇒use for conditional jumps

Conditional jumps

Based on a variety of flags (set by cmp / test)

JA (above) CF = 0 and ZF = 0
JB (below) CF = 1
JC (carry) CF = 1 (same as JB)
JE (equal) ZF = 1
JG (greater) ZF = 0 and SF = OF
JL (less) SF != OF
JO (overflow) OF = 1
JS (sign) SF = 1
JZ (zero) ZF = 1

also negations (JNA, JNB, etc.) + nonstrict cmp (JLE, JGE, etc)
some mnemonics mean same thing: JNGE = JL

Make common case fast
conditional jumps have near versions with 8-bit offset

Indirect jumps. Jump tables

from compilation of switch statement
typedef enum { ADD, SUB, MUL, DIV, MOD, AND, OR, XOR } op_t;

int calc(int op, int a, int b) {
switch(op) {
case ADD: return a + b;
case SUB: return a - b;
case MUL: return a * b;
case DIV: return a / b;
case MOD: return a % b;
case AND: return a & b;
case OR: return a | b;
case XOR: return a ˆ b;
}
return 0;

}

Indirect calls (pointer table)

#include <stdio.h>
#include <stdlib.h>

typedef int (*intfn_t)(int, int); // type of function pointer

int add(int a, int b) { return a + b; }
int sub(int a, int b) { return a - b; }
int mul(int a, int b) { return a * b; }
int idiv(int a, int b) { return a / b; }

intfn_t fntab[] = { add, sub, mul, idiv };

int main(int argc, char *argv[]) {
if (argc != 2) return 1;
unsigned op = atoi(argv[1]);
if (op < 4) printf("%d\n", fntab[op](7, 3));

}

Pointers to pointers

typedef struct ilst *intlist_t;

struct ilst {
intlist_t nxt;
int el;

};

intlist_t insert_last(intlist_t lst, int val)
{

intlist_t *adr; // pointer to cell pointer
for (adr = &lst; *adr; adr = &(*adr)->nxt);
// now adr is address of nxt field in last cell
if ((*adr = malloc(sizeof(intlist_t)))) {

(*adr)->el = val;
(*adr)->nxt = NULL;

}
return lst;

}

