
Code: analysis, bugs, and security
supported by Bitdefender

Obfuscation

Marius Minea
marius@cs.upt.ro

2 November 2016

mailto:marius@cs.upt.ro


Obfuscation: what and why

Obfuscation = make code difficult to understand
but retain functionality (equivalent to original program)

prevent reverse engineering

protect intellectual property

tamperproofing

Obfuscation can add variability
watermarking: trace origin of copies

prevent malware detection

but also protect against systematic attacks
Fred Cohen: Operating System Protection Through Program Evolution, 1992



Just for fun

The International Obfuscated C Code Contest
http://www.ioccc.org/

Best one-liner 2015: Visual factorization
f(y,x){int m,z;for(m=z=1;m*m<=y?z=y%m?z:m:x+1?z<2?y&&f(x,0):
f(z,x),putchar(x?10:32<<!y),y-=z*!!y:(f(z,y/z),0);)m++;}
main(y){f(y-1,-1);}

./a.out @ @ @ @ @ @ @ @
@ @ @ @
@ @ @ @

http://www.ioccc.org/


Transformations for Obfuscation

TransformationControlObfuscationDataobfuscationobfuscationLayout Transformation target(c)
TechnicalProtectionEncryption (Partial)Server-sideExecution TrustedNative CodeObfuscationLegalProtectionIntellectual Protection(a)

obfuscationLayoutChangeformattingRemovecommentsScrambleIdentifiers
PreventiveTransformationsExplore weak-nesses incurrentdecompilersand deobf-uscators Exploreinherentproblemswith knowndeobfuscationtechniquesReducible toNon-reducibleflow graphsTable inter-pretationOutlinestatementsInlinemethodUnrollloop Reorderexpression

Splitvariablesto procedureConvertstatic dataPromotescalars to
Preventive

objects variablesChangevariablelifetimes Modifyinheritancerelationsmerge,arraysSplit,fold, ReordermethodsReorderinstancevariablesReorderarrays
Ordering

CostPotency(b) Resilience
(d)

(g)Targeted Inherent(f)Aggregation Ordering ComputationsControl obfuscation
conditionExtend loopClonemethods ReorderstatementsReorderloops

(e) Data obfuscationAggregationStorage & EncodingChangeencoding Merge scalar

Figure 1: Classi�cation of (a) kinds of protection against malicious reverse engineering, (b) the quality of an obfuscatingtransformation, (c) information targeted by an obfuscating transformation, (d) layout obfuscations, (e) data obfuscations, (f)control obfuscations, and (g) preventive obfuscations.strict our discussion to Java programs distributed overthe Internet as Java class-�les, although most of ourresults will apply to other languages and architecture-neutral formats as well. We will argue that the onlyreasonable approach to the protection of mobile code iscode obfuscation. We will furthermore present a numberof obfuscating transformations, classify them accordingto e�ectiveness and e�ciency, and show how they canbe put to use in an automatic obfuscation tool.The remainder of the paper is structured as follows.In Section 2 we give an overview of di�erent formsof technical protection against software theft and ar-gue that code obfuscation currently a�ords the mosteconomical prevention. In Section 3 we give a briefoverview of the design of Kava, a code obfuscator forJava, which is currently under construction. Sections 4and 5 describe the criteria we use to classify and evalu-

ate di�erent types of obfuscating transformations. Themain contributions of the paper are contained in Sec-tions 6, 7, 8, and 9, which present a catalogue of ob-fuscating transformations. In Section 10 we give moredetailed obfuscation algorithms. We conclude with asummary of our results and a discussion of future direc-tions of code obfuscation (Section 11).2 Protecting Intellectual PropertyConsider the following scenario. Alice is a small soft-ware developer who wants to make her applicationsavailable to users over the Internet, presumably at acharge. Bob is a rival developer who feels that he couldgain a commercial edge over Alice if he had access toher application's key algorithms and data structures.This can be seen as a two-player game between two2

Collberg, Thomborson, Low: A Taxonomy of Obfuscating Transformations, 1997



Evaluating Obfuscations

Criteria:

potency
To what degree is a human reader confused?

resilience
How well are automated deobfuscation attacks resisted ?

cost
How much space/time overhead is added ?

stealth
How well does obfuscated code blend in with original code ?

Collberg, Thomborson, Low, 1998



Complexity metricsMetric Metric Name Citation�1 Program Length Halstead [8]E(P ) increases with the number of operators and operands in P .�2 Cyclomatic Complexity McCabe [20]E(F ) increases with the number of predicates in F .�3 Nesting Complexity Harrison [9]E(F ) increases with the nesting level of conditionals in F .�4 Data Flow Complexity Oviedo [23]E(F ) increases with the number of inter-basic block variable references in F .�5 Fan-in/out Complexity Henry [10]E(F ) increases with the number of formal parameters to F , and with the number of globaldata structures read or updated by F .�6 Data Structure Complexity Munson [21]E(P ) increases with the complexity of the static data structures declared in P . The complex-ity of a scalar variable is constant. The complexity of an array increases with the numberof dimensions and with the complexity of the element type. The complexity of a recordincreases with the number and complexity of its �elds.�7 OO Metric Chidamber [3]E(C) increases with (�a7) the number of methods in C, (�b7) the depth (distance from theroot) of C in the inheritance tree, (�c7) the number of direct subclasses of C, (�d7) the numberof other classes to which C is coupleda, (�e7) the number of methods that can be executed inresponse to a message sent to an object of C, (�f7) the degree to which C's methods do notreference the same set of instance variables. Note: �f7 measures cohesion; i.e. how stronglyrelated the elements of a module are.aTwo classes are coupled if one uses the methods or instance variables of the other.Table 1: Overview of some popular software complexity measures. E(X) is the complexity of a software component X. F isa function or method, C a class, and P a program.main() fS1;S2;g T) main() fS1;if (5==2) S1;S2;if (1>2) S2;gUnfortunately, such transformations are virtually use-less, since they can easily be undone by simple auto-matic techniques. It is therefore necessary to introducethe concept of resilience, which measures how well atransformation holds up under attack from an auto-matic deobfuscator. The resilience of a transformationT can be seen as the combination of two measures:Programmer E�ort: the amount of time required toconstruct an automatic deobfuscator that is ableto e�ectively reduce the potency of T , andDeobfuscator E�ort: the execution time and spacerequired by such an automatic deobfuscator to ef-fectively reduce the potency of T .It is important to distinguish between resilience andpotency. A transformation is potent if it manages to

confuse a human reader, but it is resilient if it confusesan automatic deobfuscator.We measure resilience on a scale from trivial to one-way, as shown in Figure 7 (a). One-way transformationsare special, in the sense that they can never be undone.This is typically because they remove information fromthe program that was useful to the human program-mer, but which is not necessary in order to execute theprogram correctly. Examples include transformationsthat remove formatting, scramble variable names, etc.Other transformations typically add useless informationto the program that does not change its observable be-havior, but which increases the \information load" ona human reader. These transformations can be undonewith varying degrees of di�culty.Figure 7 (b) shows that deobfuscator e�ort is classi-�ed as either polynomial time or exponential time. Pro-grammer e�ort, the work required to automate the de-obfuscation of a transformation T , is measured as afunction of the scope of T . This is based on the in-tuition that it is easier to construct counter-measuresagainst an obfuscating transformation that only a�ectsa small part of a procedure, than against one that maya�ect an entire program.8

Collberg, Thomborson, Low, 1998



Opaque constructs

should be easy to create, hard to analyze

opaque variable: has a property known a priori to the obfuscator,
but hard to deduce otherwise

always constant value at some point, divisible by 7, etc.

opaque predicate:
outcome known at obfuscation time, hard to determine otherwise

from problems in math, number theory, etc.



Advanced obfuscation

control flow flattening (switch/automaton-style)

make building call graph hard
insert calls through function pointers

introduce aliasing – alias analysis is hard

jumps through branch functions (change return address)

Virtualize
encode program in virtual instruction set
combine with interpreter

vary instruction set, even at runtime
multi-level emulation



Deobfuscation

Obfuscation-specific

identify control flow (branches)
memory accesses: write then execute (for unpackers)
find virtual program counter ⇒ reverse-engineer emulator

General

perform taint analysis (data flow)

compute input-output mapping



Obfuscation tools

Code Virtualizer http://oreans.com/codevirtualizer.php

ExeCryptor http://www.strongbit.com/execryptor.asp

Themida http://www.oreans.com/themida.php

VMProtect http://vmpsoft.com/

Tigress: http://tigress.cs.arizona.edu/
source-based transformations, using CIL infrastructure
+ virtualizer, JIT, and dynamic JIT

Obfuscator-LLVM:
https://github.com/obfuscator-llvm/obfuscator

http://oreans.com/codevirtualizer.php
 http://www.strongbit.com/execryptor.asp
http://www.oreans.com/themida.php
http://vmpsoft.com/
http://tigress.cs.arizona.edu/
https://github.com/obfuscator-llvm/obfuscator

