Code: analysis, bugs, and security
supported by Bitdefender

Obfuscation

Marius Minea

marius@cs.upt.ro

25 October 2017

mailto:marius@cs.upt.ro

Just for fun

The International Obfuscated C Code Contest
http://www.ioccc.org/

Best one-liner 2015: Visual factorization

f(y,x){int m,z;for (m=z=1;m*m<=y7?z=y%m?z:m:x+172<2?7y&&f (x,0) :
f(z,x),putchar(x?710:32<<!y) ,y-=z*!ly: (£(z,y/2),0) ;)m++;}
main(y){f(y-1,-1);}

./a.out @ @ @ @ @ Q QG
eeoaea@

(IR

http://www.ioccc.org/

Obfuscation: what and why

Obfuscation = make code difficult to understand
but retain functionality (equivalent to original program)

Obfuscation: what and why

Obfuscation = make code difficult to understand
but retain functionality (equivalent to original program)
prevent reverse engineering
protect intellectual property
tamperproofing

Obfuscation can add variability

Obfuscation: what and why

Obfuscation = make code difficult to understand
but retain functionality (equivalent to original program)
prevent reverse engineering
protect intellectual property
tamperproofing

Obfuscation can add variability

watermarking: trace origin of copies
prevent malware detection

but also protect against systematic attacks
Fred Cohen: Operating System Protection Through Program Evolution, 1992

Transformations for Obfuscation

(c) Transformation target
Layout Data Control Preventive
obfuscation obfuscation Obfuscation Transformation
(e) Data obfuscation (@)
Layout
Storage & Encoding Aggregation Ordering obfuscation
Split Change Merge scalar || Reorder Scramble
variables encoding variables instance Identifiers|
N variables
Promote Change Modify Change
scalars to | variable inheritance || Reorder formatting
objects lifetimes relations
; Remove
Convert Split,fold, Reorder
s comments
static data merge, arrays
to procedure arrays
(£) Control obfuscation @ Preventive
Transformations
Aggregation Ordering Computations
Inline Reorder Reducible to Targeted Inherent
thod statements || Non-reducibl
metho Non-reducible | [1oy yea] [Explore
Outline Reorder grap nesses in inherent
statements || loops Extend loop current problems
condition decompilers with known
Clone Reorder - and deobf— deobfuscatio
methods expression || Table inter- uscators techniques
Unroll pretation
loop

Collberg, Thomborson, Low: A Taxonomy of Obfuscating Transformations, 1997

Evaluating Obfuscations

Criteria:

potency
To what degree is a human reader confused?

resilience
How well are automated deobfuscation attacks resisted ?

cost
How much space/time overhead is added ?

stealth
How well does obfuscated code blend in with original code ?

Collberg, Thomborson, Low, 1998

Complexity metrics

METRIC METRIC NAME CITATION

I Program Length Halstead [§]
E(P) increases with the number of operators and operands in P.

12 Cyclomatic Complexity McCabe [20]
E(F) increases with the number of predicates in F.

13 Nesting Complexity Harrison [9]
E(F) increases with the nesting level of conditionals in F.

™ Data Flow Complexity Oviedo [23]
E(F) increases with the number of inter-basic block variable references in F.

s Fan-in/out Complexity Henry [10]
E(F) increases with the number of formal parameters to F, and with the number of global
data structures read or updated by F.

16 Data Structure Complexity Munson [21]
E(P) increases with the complexity of the static data structures declared in P. The complex-
ity of a scalar variable is constant. The complexity of an array increases with the number
of dimensions and with the complexity of the element type. The complexity of a record
increases with the number and complexity of its fields.

7 OO0 Metric Chidamber [3]

E(C) increases with (y3) the number of methods in C, (u2) the depth (distance from the
root) of C'in the inheritance tree, (1$) the number of direct subclasses of C, (1$) the number
of other classes to which C' is coupled®, (u%) the number of methods that can be executed in
response to a message sent to an object of C, (u}) the degree to which C’s methods do not
reference the same set of instance variables. Note: uf measures cohesion; i.e. how strongly
related the elements of a module are.

Collberg, Thomborson, Low, 1998

Opaque constructs

should be easy to create, hard to analyze

opaque variable: has a property known a priori to the obfuscator,
but hard to deduce otherwise
always constant value at some point, divisible by 7, etc.

opaque predicate:
outcome known at obfuscation time, hard to determine otherwise
from problems in math, number theory, etc.

Advanced obfuscation

control flow flattening (switch/automaton-style)

make building call graph hard
insert calls through function pointers

introduce aliasing — alias analysis is hard

jumps through branch functions (change return address)

Virtualize
encode program in virtual instruction set
combine with interpreter
vary instruction set, even at runtime
multi-level emulation

Deobfuscation

Obfuscation-specific

identify control flow (branches)
memory accesses: write then execute (for unpackers)

find virtual program counter = reverse-engineer emulator

General
perform taint analysis (data flow)

compute input-output mapping

Obfuscation tools

Code Virtualizer http://oreans.com/codevirtualizer.php
ExeCryptor http://www.strongbit.com/execryptor.asp
Themida http://www.oreans.com/themida.php

VMProtect http://vmpsoft.com/

Tigress: http://tigress.cs.arizona.edu/

source-based transformations, using CIL infrastructure
+ virtualizer, JIT, and dynamic JIT

Obfuscator-LLVM:
https://github.com/obfuscator-1lvm/obfuscator

http://oreans.com/codevirtualizer.php
 http://www.strongbit.com/execryptor.asp
http://www.oreans.com/themida.php
http://vmpsoft.com/
http://tigress.cs.arizona.edu/
https://github.com/obfuscator-llvm/obfuscator

