
Code: analysis, bugs, and security
supported by Bitdefender

Static analysis

Marius Minea
marius@cs.upt.ro

8 November 2017

mailto:marius@cs.upt.ro


Static analysis

Derive information about what a program does
without executing the program

Desired info varies widely:
what values does it compute? (range, overflow?)
how many registers are needed ? (compiler)
how much time? (worst-case execution time - WCET)
does it reach an error state?

Complexity - precision tradeoff

Some problems are undecidable (Turing halting problem)



Analysis: done on CFG (control flow graph)

1 int a = 0, b, c = 0;
2 do {
3 b = a + 1;
4 c = c + b;
5 a = 2 * b;
6 } while (a < 100);
7 return c;

a = 0

c = 0

b = a + 1

c = c + b

a = 2 * b

return c
a≥100

nodes are basic blocks: straight-line code segments
with single entry and exit



Dataflow analyses

Calculate possible set of values
at various program points.

1 int a = 0, b, c = 0;
2 do {
3 b = a + 1;
4 c = c + b;
5 a = 2 * b;
6 } while (a < 100);
7 return c;

a = 0

c = 0

b = a + 1

c = c + b

a = 2 * b

return c
a≥100

What value means, depends on problem.
reaching definitions: where could variable have been last assigned?
(where does the value come from)?
line 3: a last assigned at line 1 or 5



Dataflow analyses: Live variables

1 int a = 0, b, c = 0;
2 do {
3 b = a + 1;
4 c = c + b;
5 a = 2 * b;
6 } while (a < 100);
7 return c;

a = 0

c = 0

b = a + 1

c = c + b

a = 2 * b

return c
a≥100

live variables: might the value still be needed in the future ?
(do we still need a register for it?)
at (i.e., before) line 3: still need c and a, not b (gets assigned)
line 4 and 5: need c and b
line 6: need a and c



Dataflow analyses: Live variables

1 int a = 0, b, c = 0;
2 do {
3 b = a + 1;
4 c = c + b;
5 a = 2 * b;
6 } while (a < 100);
7 return c;

a = 0

c = 0

b = a + 1

c = c + b

a = 2 * b

return c
a≥100

live variables: might the value still be needed in the future ?
(do we still need a register for it?)
at (i.e., before) line 3: still need c and a, not b (gets assigned)
line 4 and 5: need c and b
line 6: need a and c



How do we compute these values?

Must traverse CFG. How many times ?

Imperfect analogy: shortest paths in graph (all-pairs)

for (k = 0; k < n; ++k)
for (i = 0; i < n; ++i)

for (j = 0; j < n; ++j)
if (d[i][k] + d[k][j] < d[i][j])

d[i][j] = d[i][k] + d[k][j]

Relevant points:
compute some values over entire graph (here: node pairs)
runs while a change propagates (shorter path found)
⇒ stops when transformation produces no change

No change: f (x) = x fixpoint of applied transformation



Worklist algorithm

foreach s do Out(s) = > // no info
W = {entry} // worklist
do

choose s ∈W // statement to be considered
W = W \ {s} // remove from worklist
old = Out(s) // save current value of interest
In(s) = join Out(s ′) forall s ′ ∈ pred(s) // update inputs
Out(s) = Transfers(In(s)) // apply meaning of statement
if Out(s) 6= old then // recompute affected successors

forall s ′ ∈ succ(s) do W = W ∪ {s ′}
while W 6= ∅

Values at each statement are sets. If universe of values finite,
and computed functions are monotone, worklist algorithm
terminates
Often: sets of boolean properties ⇒ bitvector frameworks

variable vk live at line l ? def. at line i reaches line j ?



Dataflow analyses: Value analysis

1 int a = 0, b, c = 0;
2 do {
3 b = a + 1;
4 c = c + b;
5 a = 2 * b;
6 } while (a < 100);
7 return c;

a = 0

c = 0

b = a + 1

c = c + b

a = 2 * b

return c
a≥100

In
general, set of values not finite. May approximate with intervals
Can easily derive a ≤ 99, b ≤ 100, c ≤???

depends on sophistication of math theories and abstract domains



Analyses: flow-sensitive or flow-insensitive

Does the analysis consider/keep track of statement order ?

Don’t need for some analyses:
e.g., compute call graph

Indispensable for some others
anything involving dependencies

Makes a big difference in complexity
e.g. for pointer / alias analyses
(computing points-to sets)



Analyses: intra- vs. interprocedural

intraprocedural
analyze each function individually
cannot keep of constraints due to sequence of calls, values passed

interprocedural
whole-program analyses
complex, need to keep track of control and data flow between
functions

match calls and returns to avoid spurious paths
k−CFA: keep track of last k calls (call strings)

interprocedural taint analysis: a graph sources-sinks problem



Analyses: path-sensitive or path-insensitive

Example: [Das, Lerner, Seigle, PLDI 2002]

1 int main() {
2 if (dump)
3 f = fopen(dumpFile, "w");
4 if (p) x = 0;
5 else x = 1; // irrelevant for f
6 if (dump)
7 fclose(f);
8 }

If we merge info after every if, correlation is lost
At (5), f could be uninit or open

(no correlation with dump)
⇒ spurious warning



Computing function summaries
int f(int x, int y, int z)
{

int r;
if (x > 0) {

r = y + 2 * x;
} else {

r = x + 3 * z;
}
return r;

}

Establish relations between inputs and outputs
forward computation
or backward computation

(what values could have produced current result?)

need to deal with loops:
assume bounds on loop iterations, or try to compute fixpoints



Analyses: context-sensitive or context-insensitive

context-insensitive
function summary computed once, independently of call site

context-sensitive
function summary specialized for each call site

tradeoff precision for complexity



Small checkers are great

Engler, Chelf, Chou, Hallem: Checking System Rules Using
System-Specific, Programmer-Written Compiler Extensions,
OSDI 2000 (best paper)

went on to build Coverity

many other papers on simple, small, efficient static checkers
for mining error patterns
for concurrent programs
etc.


