
Code: analysis, bugs, and security
supported by Bitdefender

Fuzzing and symbolic execution

Marius Minea
marius@cs.upt.ro

22 November 2017

mailto:marius@cs.upt.ro

A long time ago ...

 .oO Phrack 49 Oo.

 Volume Seven, Issue Forty−Nine

 File 14 of 16

 BugTraq, r00t, and Underground.Org
 bring you

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 Smashing The Stack For Fun And Profit
 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 by Aleph One
 aleph1@underground.org

‘smash the stack‘ [C programming] n. On many C implementations
it is possible to corrupt the execution stack by writing past
the end of an array declared auto in a routine. Code that does
this is said to smash the stack, and can cause return from the
routine to jump to a random address. This can produce some of
the most insidious data−dependent bugs known to mankind.
Variants include trash the stack, scribble the stack, mangle
the stack; the term mung the stack is not used, as this is
never done intentionally. See spam; see also alias bug,
fandango on core, memory leak, precedence lossage, overrun screw.

 Introduction
                                 ~~~~~~~~~~~~

   Over the last few months there has been a large increase of buffer
overflow vulnerabilities being both discovered and exploited.  Examples
of these are syslog, splitvt, sendmail 8.7.5, Linux/FreeBSD mount, Xt 
library, at, etc.  This paper attempts to explain what buffer overflows 
are, and how their exploits work.

   Basic knowledge of assembly is required.  An understanding of virtual 
memory concepts, and experience with gdb are very helpful but not necessary.
We also assume we are working with an Intel x86 CPU, and that the operating 
system is Linux.

   Some basic definitions before we begin: A buffer is simply a contiguous 
block of computer memory that holds multiple instances of the same data 
type.  C programmers normally associate with the word buffer arrays. Most 
commonly, character arrays.  Arrays, like all variables in C, can be 
declared either static or dynamic.  Static variables are allocated at load 
time on the data segment.  Dynamic variables are allocated at run time on 
the stack. To overflow is to flow, or fill over the top, brims, or bounds. 
We will concern ourselves only with the overflow of dynamic buffers, otherwise
known as stack−based buffer overflows.

                          Process Memory Organization
                          ~~~~~~~~~~~~~~~~~~~~~~~~~~~

 To understand what stack buffers are we must first understand how a
process is organized in memory. Processes are divided into three regions:
Text, Data, and Stack. We will concentrate on the stack region, but first
a small overview of the other regions is in order.

 The text region is fixed by the program and includes code (instructions)
and read−only data. This region corresponds to the text section of the
executable file. This region is normally marked read−only and any attempt to
write to it will result in a segmentation violation.

 The data region contains initialized and uninitialized data. Static

variables are stored in this region. The data region corresponds to the
data−bss sections of the executable file. Its size can be changed with the
brk(2) system call. If the expansion of the bss data or the user stack
exhausts available memory, the process is blocked and is rescheduled to
run again with a larger memory space. New memory is added between the data
and stack segments.

 /−−−−−−−−−−−−−−−−−−\ lower
 | | memory
 | Text | addresses
 | |
 |−−−−−−−−−−−−−−−−−−|
 | (Initialized) |
 | Data |
 | (Uninitialized) |
 |−−−−−−−−−−−−−−−−−−|
 | |
 | Stack | higher
 | | memory
 \−−−−−−−−−−−−−−−−−−/ addresses

 Fig. 1 Process Memory Regions

 What Is A Stack?
                               ~~~~~~~~~~~~~~~~

   A stack is an abstract data type frequently used in computer science.  A
stack of objects has the property that the last object placed on the stack
will be the first object removed.  This property is commonly referred to as
last in, first out queue, or a LIFO.

   Several operations are defined on stacks.  Two of the most important are
PUSH and POP.  PUSH adds an element at the top of the stack.  POP, in 
contrast, reduces the stack size by one by removing the last element at the 
top of the stack.

                            Why Do We Use A Stack?
                            ~~~~~~~~~~~~~~~~~~~~~~

 Modern computers are designed with the need of high−level languages in
mind. The most important technique for structuring programs introduced by
high−level languages is the procedure or function. From one point of view, a
procedure call alters the flow of control just as a jump does, but unlike a
jump, when finished performing its task, a function returns control to the
statement or instruction following the call. This high−level abstraction
is implemented with the help of the stack.

 The stack is also used to dynamically allocate the local variables used in
functions, to pass parameters to the functions, and to return values from the
function.

 The Stack Region
                               ~~~~~~~~~~~~~~~~

   A stack is a contiguous block of memory containing data.  A register called
the stack pointer (SP) points to the top of the stack.  The bottom of the 
stack is at a fixed address.  Its size is dynamically adjusted by the kernel 
at run time. The CPU implements instructions to PUSH onto and POP off of the 
stack. 

   The stack consists of logical stack frames that are pushed when calling a
function and popped when returning.  A stack frame contains the parameters to 
a function, its local variables, and the data necessary to recover the 
previous stack frame, including the value of the instruction pointer at the 



Now: Cyber Grand ChallengeDefense Advanced Research Projects Agency News And Events “Mayhem” Declared Preliminary Winner of Historic Cyber

Grand Challenge

“Mayhem” Declared Preliminary Winner of Historic Cyber Grand Challenge
Automated system outperforms competing machines in high-stakes final event aimed at revolutionizing
software vulnerability detection and patching

OUTREACH@DARPA.MIL
8/4/2016

Capping an intensive three-year push to spark a revolution in automated cyber defense, DARPA today
announced that a computer system designed by a team of Pittsburgh-based researchers is the presumptive
winner of the Agency’s Cyber Grand Challenge (CGC), the world’s first all-hacking tournament.

The winning computer system, dubbed Mayhem, was created by a team known as ForAllSecure—one of
seven teams that competed for nearly $4 million in prizes in today’s all-day competition, performed in front of
5,000 computer security professionals and others at the Paris Las Vegas Conference Center.

Xandra, a computer system designed by team TECHx of Ithaca, N.Y., and Charlottesville, Va., was declared
the presumptive second-place winner. And Mechanical Phish, a system designed by team Shellphish of
Santa Barbara, Calif., was named the presumptive third-place winner. Judges will spend the night verifying
those preliminary results, and winners will be officially crowned at an award ceremony Friday morning,
immediately before the launch of DEF CON, the nation’s largest hacker tournament, also being hosted at the
Paris Hotel. First place in the CGC carries a cash award of $2 million; second- and third-place teams will
receive $1 million and $750,000, respectively.

At Friday’s ceremony, DEF CON organizers are expected to formally invite Mayhem to participate in this
year’s DEF CON Capture the Flag competition, marking the first time a machine will be allowed to play in that



What does it take?

Then: intuition, creativity, a debugger

Now: debugger not enough

lots of math: constraint / satisfiability checking

precise modeling of instruction semantics (specialized platforms)

intelligent combination of different techniques

engineering skills for performance



From bug finding to automatic exploit generation

Fuzzing
lightweight technique, evolves inputs
aims for input variety, high statement/branch coverage

Symbolic execution
more expensive, analyzes program control flow
attempts path coverage

Automatic exploit generation
find path to bug, then synthesize exploit



Fuzzing



Fuzzer case study: AFL (American Fuzzy Lop)

fuzzer by Michal Zalewski, http://lcamtuf.coredump.cx/afl/

active development, scores of bugs found in key software

http://lcamtuf.coredump.cx/afl/


AFL: Basic Workings

if source available: compiles project with coverage instrumentation
(gcc/g++/clang wrapper)

binary-only: execute under QEMU in user-mode emulation

start: small set of initial test inputs to evolve

workings:
maintains queue of test inputs
mutates inputs using several strategies
if new coverage achieved, add mutant to input queue

minimize each test input (keeping coverage)
minimize input corpus (avoids overlap)



AFL: Measuring coverage

Goal: distinguish “interesting” basic-block traces

Example: A -> B -> C -> D -> E
and A -> B -> D -> C -> E

have different transition pairs (C, D) and (D, C)

transition coverage provides more info than basic block coverage
also self-loops A->A (tight program loops)

can’t record exhaustively ⇒ do some hashing for compression

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location ˆ prev_location]++;
prev_location = cur_location >> 1;

AFL keeps 64kB map of branch pairs
⇒ < 14% collision on 20k branches



Detecting new behaviors

1) new tuples (of basic blocks) in branch map

2) coarse hit count of branch tuples

don’t keep actual counts, just ranges (buckets)
1, 2, 3, 4-7, 8-15, 16-31, 32-127, 128+

fast to compute (bit ops: powers of 2)
tracks “interesting” changes

(individual low counts + changes between intervals)



Evolving input queue

For most targets, keep 1k – 10k entries (test inputs)
10-30% due to new tuple discovery
rest: changes in hit counts

Culling the test corpus
periodically find subset which cover all branch tuples
prioritize based on execution latency, file size
when generating mutants, use “favored” entries 90%+ of the time

Trimming input files (for size)
affects performance (execution time)
affects mutation (effect of change more likely in small input)

⇒ try to remove blocks of data from input, check if coverage kept



Fuzzing strategies

Deterministic
Sequential bit flips: flip 1-4 bits, stepping one bit at a time
yield: 70 (single flip) downto 10 new paths per million
expensive (one execve() for each bit of input)
Sequential byte flips (1-4 bytes)
Simple arithmetic: incr/decr integer values (small inc, ±35)
Known integers: can trigger edge conditions in typical code

(-1, 256, 1024, MAX_INT, etc)

Nondeterministic: stacked bit flips, insertions, deletions

Test case splicing
take two inputs differing in ≥ 2 places, splice at some midpoint,
then do nondeterministic tweaks
usually +20% of execution paths



Grammars and keywords

To fuzz structured input, can start with dictionary of keywords
Even random keyword combinations yield interesting valid SQL

select sum(1)LIMIT(select sum(1)LIMIT -1,1);
select round( -1)‘‘‘‘;
select length(?)in( hex(1)+++1,1);
select abs(+0+ hex(1)-NOT+1) t1;
select DISTINCT "Y","b",(1)"Y","b",(1);

Can also automatically find keywords by detecting
which walking byte flips trigger a new execution path

AFL can synthesize complex file structures (e.g. images)
even when starting from invalid input!



Synthesizing JPEGs from scratch

start with text file containing ’hello’
fuzzer finds coverage change with markers 0xFF, 0xF9, etc.

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

six hours to generate first image, then others in rapid sequence
⇒ general-purpose fuzzing works; improved if format-specific

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html


Automatic format detection

afl-analyze tool attempts to classify bytes of input:



Classification of input fields

”No-op blocks”: no apparent control flow change
(data payload)

”Superficial content”: some control flow changes
(strings in rich documents)

”Critical stream”: control flow altered in correlated ways
(keywords, magic values, compressed data)

”Suspected length field” – small int causing control flow change
”Suspected cksum or magic int”
”Suspected checksummed block”
”Magic value section”



Performance: fork server

For libraries, usual fuzzing approach is with a simple client program
but: overhead for execve(), linker, library initialization routines

Idea: modify binary to stop after all initialization, before main code

On command from fuzzer, fork() clone of already-loaded program
fast due to copy-on-write



Symbolic execution



Symbolic execution

described since mid-seventies (James C. King 1976, others)

program is executed by a special interpreter, using symbolic inputs
⇒ results in symbolic execution tree

each branch: path condition as formula over symbolic variables
tree traversal stops when path condition becomes unsatisfiable

Can be used to:
attaining high coverage
or try to reach a specific branch

Successful mature technique, hundreds of papers, many tools:
Java Pathfinder, (j)CUTE, Crest, KLEE, Pex, SAGE, ...

for C/C++, C#, Java, more recently JavaScript



Symbolic Execution Example

5

1. int a = α, b = β, c = γ;
2.                   // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5.   x = -2;
6. }
7. if (b < 5) {
8.   if (!a && c)  { y = 1; }
9.   z = 2;
10.}
11.assert(x+y+z!=3)

x=0, y=0, z=0

α

x=-2

z=2

✔

✘

β<5 ¬α∧γ

y=1✔

β<5

z=2

z=2

✔

✔

t f

t f t f

t f

α∧(β<5)

path condition

α∧(β≥5)

¬α∧(β≥5)

¬α∧(β<5)∧¬γ

¬α∧(β<5)∧γ

slide: Jeff Foster, UMD



Constraint solving in symbolic execution

Symbolic execution: improved by advances in satisfiability checking
(fundamental problem in logic)

here: satisfiability modulo theories
incorporates knowledge specific to type of formula:

linear integer/real arithmetic, bitvectors, arrays, strings

Annual SMT competition, continuous advances in performance
(millions of constraints for pure boolean formulas)
Solvers: Z3 (Microsoft Research), CVC (NYU), STP (Stanford),
Yices (SRI), etc.

most open-source



Concolic (concrete + symbolic) execution

symbolic execution is directed by concrete run
keep variable symbolic if possible, else fall back to concrete values

native functions, nonlinear arithmetic, library/system functions

y = hash(x); // can’t solve hash => y becomes concrete
if (x + y > 0)

// path 1
else

// path 2

Assume: x = 20; y = hash(20) = 13 ⇒ reach path 1
To reach path 2, negate x + y > 0, with concrete y (y = 13)
Solver might return, e.g., x = -15

if lucky, -15 + hash(-15) < 0, we reach path 2
else execution still follows path 1, retry

⇒ worst-case: degrades to random testing



KLEE: symbolic execution for LLVM

Cadar, Dunbar, Engler. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs,
OSDI 2008 (best paper)

90%+ coverage on coreutils + busybox

56 serious bugs in 430 kloc, some bugs 15 years old
simple crash inputs generated for several programs

based on LLVM infrastructure (analyzes LLVM bitcode)

lots of engineering work

path exploration heuristics
efficient branching due to copy-on-write
models for library functions, file system, etc.



Symbolic execution in industry

SAGE: Whitebox Fuzzing for Security Testing

Research Challenges:
- How to recover from imprecision ? PLDI’05, PLDI’11
- How to scale to billions of x86 instructions? NDSS’08
- How to check many properties together? EMSOFT’08
- How to leverage grammar specifications? PLDI’08
- How to deal with path explosion ? POPL’07,TACAS’08
- How to reason precisely about pointers? ISSTA’09
- How to deal with floating-point instr.? ISSTA’10
- How to deal with input-dependent loops? ISSTA’11
- How to synthesize x86 circuits automatically? PLDI’12
- How to run  24/7/365 for months at a time? ICSE’2013
+ research on constraint solvers

Impact: since 2007

- 500+ machine years (in largest fuzzing lab in the world)

- 3.4 Billion+ constraints (largest SMT solver usage ever!)

- 100s of apps, 100s of bugs (missed by everything else…)

- Ex: 1/3 of all Win7 WEX security bugs found by SAGE 

- Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs

- Millions of dollars saved (for Microsoft and the world)

- SAGE is now used daily in Windows, Office, etc.

Ella Bounimova      Patrice Godefroid      David Molnar

SAGE: Whitebox Fuzzing for Security Testing

Research Challenges:
- How to recover from imprecision ? PLDI’05, PLDI’11
- How to scale to billions of x86 instructions? NDSS’08
- How to check many properties together? EMSOFT’08
- How to leverage grammar specifications? PLDI’08
- How to deal with path explosion ? POPL’07,TACAS’08
- How to reason precisely about pointers? ISSTA’09
- How to deal with floating-point instr.? ISSTA’10
- How to deal with input-dependent loops? ISSTA’11
- How to synthesize x86 circuits automatically? PLDI’12
- How to run  24/7/365 for months at a time? ICSE’2013
+ research on constraint solvers

Impact: since 2007

- 500+ machine years (in largest fuzzing lab in the world)

- 3.4 Billion+ constraints (largest SMT solver usage ever!)

- 100s of apps, 100s of bugs (missed by everything else…)

- Ex: 1/3 of all Win7 WEX security bugs found by SAGE 

- Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs

- Millions of dollars saved (for Microsoft and the world)

- SAGE is now used daily in Windows, Office, etc.

Ella Bounimova      Patrice Godefroid      David Molnar



From vulnerabilities to exploits



Which bugs are exploitable?

Easy to find functions which are surely unsafe

For cases which are potentially be unsafe, must decide
1) is it really a bug ?
2) can it be exploited ?



Automated Exploit Generation

S. Heelan, Automatic generation of control flow hijacking exploits
for software vulnerabilities, MSc thesis, Oxford, 2009

Two steps:
generate input that executes and exploitable program path
express conditions necessary to transfer control to shellcode

Avgerinos, Brumley et al.:
Automatic Exploit Generation, NDSS 2011
Unleashing Mayhem on Binary Code, IEEE S&P 2012

applied large-scale to Debian code
can generate buffer overflow and format string attacks
(form constraints on symbolic instruction pointer / format string)



checking Debian for exploitable bugs 

16 

37,000 programs 

209,000,00 test cases 

2,606,000 crashes 

14,000 unique bugs 

152 new exploits 

16 billion verification queries 

* [ARCB, ICSE 2014, ACM Distinguished Paper], [ACRSWB, CACM 2014] 

~$0.28/bug 
~$21/exploit  

slide: David Brumley, CMU, 2015



Combining techniques

Driller: Augmenting Fuzzing Through Selective Symbolic Execution
Stephens, Kruegel, Vigna et al. (UC Santa Barbara), NDSS 2016

Key insight: fuzzing is cheap, good overall coverage

Symbolic execution: expensive, path explosion,
but can pass through precise, complex condition



Sample code

The symbolic memory optimizations increase the
scalability of the concolic execution engine, but can result in
an incomplete state space, where fewer solutions are possible.
Unfortunately, this is a trade-off that must be made to make
analysis of real-world binaries realistic.

B. Example

Concolic execution is good at solving different problems
than fuzzing. Recall the example demonstrating the drawback
of fuzzing, from Section IV-B, reproduced in Listing 3..
Because of the exactness of the input required to pass the check
guarding the call to the vulnerable function, fuzzing is
unable to explore that piece of code in a reasonable time frame.

1 i n t main ( void )
2 {
3 i n t x ;
4 r e a d ( 0 , &x , s i z e o f ( x ) ) ;
5
6 i f ( x == 0x0123ABCD )
7 v u l n e r a b l e ( ) ;
8 }

Listing 3. A program that yields to concolic execution.

However, a concolic execution engine will be able to easily
satisfy this check and trigger the vulnerable function.
For this example, concolic execution only needs to explore a
small number of paths to find one which reaches the bug in
this example, but for bigger binaries and real-world examples,
there will be far too many paths to explore in the same manner.

C. Limitations

The traditional approach to concolic execution involves
beginning concolic execution from the beginning of a program
and exploring the path state with the symbolic execution
engine to find as many bugs as possible. However, this
approach suffers from two major limitations.

First, concolic execution is slow. This is caused by the
need to interpret application code (as opposed to natively
executing it, as with a fuzzer) and by the overhead involved
in the constraint solving step. Specifically, the latter operation
involves the solution of an NP-complete problem, making the
generation of potential inputs (and the determination of which
conditional jumps are feasible) time-consuming.

Worse, symbolic execution suffers from the state explosion
problem. The number of paths grows exponentially as the
concolic execution engine explores the program, and it quickly
becomes infeasible to explore more than a tiny fraction of the
paths. Consider the example in Listing 4. In this program, the
vulnerable() is triggered when the user enters exactly
25 B characters, but this is a condition difficult to express in
a symbolic execution framework. Symbolic execution of this
program will cause a huge state explosion as the simulated
CPU steps down the recursive calls into the check()
function. Each execution of the ternary conditional comparing
a character to the literal B splits every simulated state into
two, eventually resulting in 2100 possible states, which is an
infeasible amount to process.

A genetic fuzzer that selects inputs based on state
transitions, on the other hand, does not reason about the

whole state-space of a program, but only on the state
transitions triggered by inputs. That is, it will focus chiefly
on the number of times, for example, the check on line 5
succeeds. That is, regardless of where the B characters are in
the input, states will be judged based on the number of them
in the input, avoiding the path explosion problem.

While progress has been made toward reducing this
problem with intelligent state merging [1], the general
problem remains.

1 i n t check ( char *x , i n t d e p t h ) {
2 i f ( d e p t h >= 100) {
3 re turn 0 ;
4 } e l s e {
5 i n t c o u n t = (* x == ’B ’ ) ? 1 : 0 ;
6 c o u n t += check ( x +1 , d e p t h +1) ;
7 re turn c o u n t ;
8 }
9 }

10
11 i n t main ( void ) {
12 char x [ 1 0 0 ] ;
13 r e a d ( 0 , x , 100) ;
14
15 i f ( check ( x , 0 ) == 25)
16 v u l n e r a b l e ( ) ;
17 }

Listing 4. A program that causes a path explosion under concolic
execution.

D. Concolic Execution in Driller

In most cases, fuzzing can adequately explore a large
portion of paths on its own, simply by finding them with
random bit flips and other mutation strategies. By utilizing
native execution, it will outperform concolic execution in most
cases where it can randomly trigger the paths. Thus, most
of the work is offloaded from the concolic execution engine
to the fuzzer, which will find many paths quickly, letting the
concolic engine just work on solving the harder constraints.

When fuzzing is unable to discover inputs that result in new
execution paths, the concolic execution engine is invoked. It
traces the paths discovered by the fuzzing, identifies inputs that
diverge into new program components, and performs limited
symbolic exploration. Additionally, when a crashing input is
found by the fuzzing component, the concolic execution engine
“re-randomizes” it to recover the parts of a crashing input that
are dependent on randomness and other environmental factors.

1) Pre-constrained Tracing: Driller uses concolic execu-
tion to trace the interesting paths from the fuzzer and generate
new inputs. A key factor in the effectiveness of this approach
is that it allows Driller to avoid the path explosion inherent in
concolic exploration, because only the path representing the
application’s processing of that input is analyzed.

When traces are passed from the fuzzer to the symbolic
execution, the goal is to discover new transitions that fuzzing
had not previously found. Driller’s concolic execution engine
traces the input, following the same path that was taken by
the fuzzer. When Driller comes upon a conditional control
flow transfer, it checks if inverting that condition would result
in the discovery of a new state transition. If it will, Driller
produces an example input that will drive execution through
the new state transition instead of the original control flow.

7



Driller: Structure of explored call graph

D4 D3

C

D5

D1

A

B

D2

D6

Fuzzed transitions
Concolic #1 transitions
Concolic #2 transitions
Concolic #3 transitions

Compartment 1 (found initially)
Compartment 2 (after concolic invocation #1)
Compartment 3 (after concolic invocation #2)
Compartment 4 (after concolic invocation #3)

Fig. 10. Graph visualizing the progress made by Driller in discovering new compartments. Each node is a function; each edge is a function call, but return
edges are excluded to maintain legibility. Node “A” is the entry point. Node “B” contains a magic number check that requires the symbolic execution component
to resolve. Node “C” contains another magic number check.

B

D6C

D5 D5

Compartment 1 Compartment 2 Compartment 3 Compartment 4

Fig. 11. The sequence of compartments through which execution flows for a trace of the crashing input for CGC application 2b03cf01. Driller’s ability to “break
into” the fourth compartment (represented by the black nodes) was critical for generating the crashing input. The generated, derandomized crashing input was
“A\x00\x00\x00\x00\x00\x00\x00\x9c6\x00\x00\x18\x04\x00\x00\x18’\x00\x00A\x00\x00\x00\x00\x00\x00\x00\x9c6\x00\x00\x19\x04\x00
\x00\x14\x00\x00\x00A\x00\xf8\xff\xff\xec\x00d\x96X\x0c\x00\x06\x08\x00\x00\x10\x00\x00\x00A\x00\x00\x00\x00\x00\x00\xfb\x96X
\x0c\x00\x02\x08\x00\x00\x18’\x00\x00A\x00\xebA\x00\x00d\x96X\x0c\x00\x06”. The full exploit specification, conforming to the DARPA CGC
exploit specification format and accounting for randomness, is available in Appendix A.

13



Path to vulnerability

Fuzzing helps explore a “compartment” efficiently

Symbolic execution finds “door” between compartments

D4 D3

C

D5

D1

A

B

D2

D6

Fuzzed transitions
Concolic #1 transitions
Concolic #2 transitions
Concolic #3 transitions

Compartment 1 (found initially)
Compartment 2 (after concolic invocation #1)
Compartment 3 (after concolic invocation #2)
Compartment 4 (after concolic invocation #3)

Fig. 10. Graph visualizing the progress made by Driller in discovering new compartments. Each node is a function; each edge is a function call, but return
edges are excluded to maintain legibility. Node “A” is the entry point. Node “B” contains a magic number check that requires the symbolic execution component
to resolve. Node “C” contains another magic number check.

B

D6C

D5 D5

Compartment 1 Compartment 2 Compartment 3 Compartment 4

Fig. 11. The sequence of compartments through which execution flows for a trace of the crashing input for CGC application 2b03cf01. Driller’s ability to “break
into” the fourth compartment (represented by the black nodes) was critical for generating the crashing input. The generated, derandomized crashing input was
“A\x00\x00\x00\x00\x00\x00\x00\x9c6\x00\x00\x18\x04\x00\x00\x18’\x00\x00A\x00\x00\x00\x00\x00\x00\x00\x9c6\x00\x00\x19\x04\x00
\x00\x14\x00\x00\x00A\x00\xf8\xff\xff\xec\x00d\x96X\x0c\x00\x06\x08\x00\x00\x10\x00\x00\x00A\x00\x00\x00\x00\x00\x00\xfb\x96X
\x0c\x00\x02\x08\x00\x00\x18’\x00\x00A\x00\xebA\x00\x00d\x96X\x0c\x00\x06”. The full exploit specification, conforming to the DARPA CGC
exploit specification format and accounting for randomness, is available in Appendix A.

13



Fuzzing vs. concolic execution

additional basic blocks were discovered as a result of Driller,
that the fuzzer was unable to find on its own.

Fig. 6. The number of additional basic blocks found by Driller over time,
that the fuzzer was unable to find on its own. Execution time is shown
normalized to the execution time of the binary, which varies depending on
if/when it crashed. This graph includes the 13 binaries that invoked, and
benefited from, concolic execution.

F. Application Component Coverage

A goal of the symbolic traces in Driller is to enable
the fuzzer to explore the various compartments in a binary,
where the compartments may be separated by complex
checks on user input. We expect to see inputs generated by
invocations of the concolic tracer correspond to finding new
compartments in the application. That is, the inputs generated
by the concolic execution engine should enable the fuzzer to
reach and explore new areas of code.

Fig. 7. Graph showing how many times concolic execution was invoked in
binaries where fuzzing could not crash the binary on its own.

As shown in Figure 5, 68 of the 126 applications in the data
set did not have any difficult checks that needed Driller’s sym-
bolic execution. These correspond to applications for which the
fuzzing component independently found crashing inputs or for
which it never became “stuck”. These applications tend to be
the ones with simple protocols and fewer complex checks. On
the other hand, Driller was able to satisfy at least one difficult
check in 13 of the binaries and multiple difficult checks in
4 of the binaries. These compartments are difficult for basic

fuzzers to enter because of the specific checks separating them,
but solvable by the hybrid approach employed by Driller.

Each invocation of concolic execution has the potential
to guide execution to a new compartment in the application.
This can be measured by analyzing the basic block coverage
of Driller before a fuzzing round gets “stuck” and invokes
concolic execution versus the coverage achieved by the
subsequent round of fuzzing, after the concolic execution
component pushed execution through to the next compartment.
We present this in Figure 8, by showing the fraction of basic
blocks, normalized to the total number of basic blocks
discovered throughout the experiment, for each binary on
which concolic execution was invoked, at each stage of
the analysis. The graph demonstrates that Driller does drive
execution into new compartments in applications, allowing the
fuzzer to quickly explore a greater amount of code. We present
an in-depth example of this for our case study in Section VI-G.

Fig. 8. Graph showing how each invocation of concolic execution lead
to more basic block transitions found. Only shown for binaries in which
symbolic execution identified additional inputs.

G. Case Study

Fig. 9. For the binary 2b03cf01, which Driller crashed in about 2.25 hours,
this graph shows the number of basic blocks found over time. Each line
represents a different number of invocations of symbolic execution from zero
to three invocations. After each invocation of symbolic execution, the fuzzer
is able to find more basic blocks.

11



Bugs by technique
for which the symbolic execution baseline alone found a
vulnerability, and leaving 6 applications for which Driller’s
approach was the only one to find the vulnerability. Essentially,
Driller effectively merges and expands on the capabilities
offered by baseline fuzzing and baseline concolic execution,
achieving more results than both do individually. These results
are presented in Figure 5.

In total, Driller was able to identify crashes in 77 unique
applications, an improvement of 6 crashes (8.4%) over the
union of the baseline experiments. This is the same number
of crashes as identified by the top-scoring team in the
competition (and significantly higher than any of the other
competitors), in the same amount of time. Without Driller
(i.e., with the two baseline approaches), we would not have
achieved these results. Note that we are well-aware that the
comparison to a participating team is only indicative and it
is not meant to be qualitative. The participating team was
operating under strict time constraints, with little or no space
for errors. Our experiments benefit from additional time to
prepare and our techniques could be refined throughout the
course of Driller’s development.

These results demonstrate that enhancing a fuzzer with
selective concolic execution improves its performance
in finding crashes. By advancing the state of the art in
vulnerability excavation, Driller is able to crash more
applications than the union of those found by fuzzing and
by symbolic execution separately. While a contribution of
6 unique vulnerabilities might seem low compared to the
total number of applications in the CGC qualifying event,
these crashes represent vulnerabilities deep in their respective
binaries, many of which require multiple concolic execution
invocations to penetrate through several compartments.

E. State Transition Coverage

Selective symbolic execution is able to overcome a
fundamental weakness of fuzzers when dealing with “magic”
constants and other complex input checks. That means that,
after the fuzzer is unable to identify new interesting inputs
(for example, due to a failure to guess a hash or a magic
number), the concolic execution engine can generate an input
allowing the fuzzer to continue exploring paths beyond where
it had become stuck. This aspect of Driller can be observed in
Table I, which shows the breakdown of how state transitions
were found during execution. In applications in which the
symbolic execution was able to find a new path, fuzzing alone
had only found an average of 28.5% of the block transitions.

As expected, the symbolic traces account for only a small
amount of new state transitions in these binaries (about 15.1%
on average), as the symbolic exploration is limited in scope and
reserved mostly for identifying and passing interesting checks.
However, the inputs produced by the concolic execution engine
help the fuzzing engine in successfully penetrating these state
transitions. The fuzzing engine’s subsequent modifications of
these inputs allow it to find, on average, an additional 56.5%
of state transitions. In total, for the applications in which the
fuzzer eventually gets stuck and symbolic execution found
a new path, 71.6% of the state transitions resulted from the
inputs based on those that were generated during symbolic
traces. The fact that the small numbers of concolically-
contributed inputs result in a much larger set of state transitions

Binaries

D

S

F

Method Crashes Found
Fuzzing 68

Fuzzing ∩ Driller 68
Fuzzing ∩ Symbolic 13

Symbolic 16
Symbolic ∩ Driller 16

Driller 77

Fig. 5. The makeup of the experimentation results. The Venn Diagram shows
the relative coverage of Basic Fuzzing (AFL), Symbolic Execution, and
Driller in terms of finding crashes in the CGC dataset. The circle labeled F
represents crashes found by fuzzing, S represents crashes found by symbolic
execution, and D represents crashes found by driller. The table presents these
results in terms of the relative effectiveness of the different methods and their
improvement relative to each other. The attentive reader can see that Driller
identifies a super-set of the crashes found by Fuzzing and Symbolic Execution.

that the fuzzer can explore demonstrates that the inputs
generated by Driller’s concolic execution engine stimulated
a much deeper exploration of the application. It is important
to keep in mind that this number only applies to 13 of the 41
applications which became ”stuck” and were able to have a
new path identified by symbolic execution. These percentages
are normalized over the total amount of basic blocks that
we saw over the course of the experiment, as generating a
complete Control Flow Graph statically requires heavyweight
static analysis that is outside of the scope of this paper.

As discussed in Section IV, we consider a state transition
to be an ordered pair of basic blocks (A,B) where block B
is executed immediately following block A. In other words,
a state transition is an edge in a Control Flow Graph where
each node represents a basic block in the program. It is clear
that if we find every state transition that we have complete
code coverage. Similarly, if we find few state transitions, than
we likely have very low coverage. Thus, it is reasonable to
use the number of unique state transitions as a measure of
code coverage. In Figure 6, we show how Driller improved
the basic block coverage over time, by showing how many

10



Where to from here?

Fascinating work, rapid reaction, spectacular advance
strong reliance on theory/logic (advances in SMT solvers)
open-source platforms (angr, BAP, BINSEC, etc.)
engineering, performance, integration of techniques

More good reads:

Yan Shoshitaishvili, Ruoyu Wang, Ch. Kruegel, G. Vigna et al.:
(State of) The Art of War: Offensive Techniques in Binary Analysis,
IEEE S&P 2016
describes http://angr.io/ platform from UCSB

http://angr.io/

