Code: analysis, bugs, and security
supported by Bitdefender

Fuzzing and symbolic execution

Marius Minea

marius@cs.upt.ro

22 November 2017

mailto:marius@cs.upt.ro

A long time ago ...

.00 Phrack 49 Oo.

Volume Seven, Issue Forty-Nine
File 14 of 16

BugTraq, r00t, and Underground.Org
bring you

Smashing The Stack For Fun And Profit

by Aleph One
alephl@underground.org

Now: Cyber Grand Challenge

“Mayhem” Declared Preliminary Winner of Historic Cyber Grand Challenge

Automated system outperforms competing machines in high-stakes final event aimed at revolutionizing
software vuli bility detection and patchil

OUTREACH@DARPA.MIL
8/4/2016

Capping an intensive three-year push to spark a revolution in automated cyber defense, DARPA today
announced that a computer system designed by a team of Pittsburgh-based researchers is the presumptive
winner of the Agency’s Cyber Grand Challenge (CGC), the world’s first all-hacking tournament.

What does it take?

Then: intuition, creativity, a debugger

Now: debugger not enough

lots of math: constraint / satisfiability checking

precise modeling of instruction semantics (specialized platforms)
intelligent combination of different techniques

engineering skills for performance

From bug finding to automatic exploit generation

Fuzzing
lightweight technique, evolves inputs
aims for input variety, high statement/branch coverage

Symbolic execution
more expensive, analyzes program control flow
attempts path coverage

Automatic exploit generation
find path to bug, then synthesize exploit

Fuzzing

Fuzzer case study: AFL (American Fuzzy Lop)

fuzzer by Michal Zalewski, http://lcamtuf.coredump.cx/afl/

active development, scores of bugs found in key software

american fuzzy lop 0.47b (readpng)

process timing overall results
n ti : 0 days, 0 hrs, 4 min, 43 sec :
: 0 days, 0 hrs, 0 min, 26 sec : 195
: none seen yet i : 0
0 days, 0 hrs, 1 min, 51 sec] 1
map coverage
- 38 (19.49%)

: 1217 (7.43%)
© 0 (0.00%)

: 2.55 bits/tuple

in depth
: 128 (65.64%)

Findings

: interest 32/8

: 0/9990 (0.00%)
: 654k
- 2306/sec
Jtratuqy yields
I 88/14.4k, 6/14.4k, 6/14.4k
0/1804, 0/1786 1/1750
: 31/126k, 3/45.6k, 1/17.8k
: 1/15.8k, 4/65.8k, 6/78.2k
: 34/254k, 0/0
2876 B/931 (61.45% gain)

: 85 (43.59%)
: 0 (0 unique)
- 1 (1 unique)
path geometry
- 3

178
;- 114

http://lcamtuf.coredump.cx/afl/

AFL: Basic Workings

if source available: compiles project with coverage instrumentation
(gcc/g++/clang wrapper)

binary-only: execute under QEMU in user-mode emulation
start: small set of initial test inputs to evolve

workings:
maintains queue of test inputs
mutates inputs using several strategies
if new coverage achieved, add mutant to input queue

minimize each test input (keeping coverage)
minimize input corpus (avoids overlap)

AFL: Measuring coverage

Goal: distinguish “interesting” basic-block traces
Example: A -> B ->C -> D -> E
and A->B->D->C->E

have different transition pairs (C, D) and (D, C)

transition coverage provides more info than basic block coverage
also self-loops A->A (tight program loops)

can't record exhaustively = do some hashing for compression

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location "~ prev_location]++;
prev_location = cur_location >> 1;

AFL keeps 64kB map of branch pairs
= < 14% collision on 20k branches

Detecting new behaviors

1) new tuples (of basic blocks) in branch map

2) coarse hit count of branch tuples

don't keep actual counts, just ranges (buckets)
1, 2, 3, 4-7, 8-15, 16-31, 32-127, 128+

fast to compute (bit ops: powers of 2)
tracks “interesting” changes
(individual low counts + changes between intervals)

Evolving input queue

For most targets, keep 1k — 10k entries (test inputs)
10-30% due to new tuple discovery
rest: changes in hit counts

Culling the test corpus

periodically find subset which cover all branch tuples

prioritize based on execution latency, file size

when generating mutants, use “favored” entries 90%+ of the time

Trimming input files (for size)
affects performance (execution time)
affects mutation (effect of change more likely in small input)
= try to remove blocks of data from input, check if coverage kept

Fuzzing strategies

Deterministic

Sequential bit flips: flip 1-4 bits, stepping one bit at a time

yield: 70 (single flip) downto 10 new paths per million

expensive (one execve() for each bit of input)

Sequential byte flips (1-4 bytes)

Simple arithmetic: incr/decr integer values (small inc, £35)

Known integers: can trigger edge conditions in typical code
(-1, 256, 1024, MAX_INT, etc)

Nondeterministic: stacked bit flips, insertions, deletions

Test case splicing

take two inputs differing in > 2 places, splice at some midpoint,
then do nondeterministic tweaks

usually +20% of execution paths

Grammars and keywords

To fuzz structured input, can start with dictionary of keywords

Even random keyword combinations yield interesting valid SQL

select sum(1)LIMIT(select sum(1)LIMIT -1,1);
select round(-1)°¢¢¢¢;

select length(?)in(hex(1)+++1,1);

select abs(+0+ hex(1)-NOT+1) t1;

select DISTINCT "Y","b",(1)"Y","b",(1);

Can also automatically find keywords by detecting
which walking byte flips trigger a new execution path

AFL can synthesize complex file structures (e.g. images)
even when starting from invalid input!

Synthesizing JPEGs from scratch

start with text file containing "hello’
fuzzer finds coverage change with markers OxFF, 0xF9, etc.
’_l i1 1.r 111 l_| on| oo (v e oo e e veee! s e | o 1_l| I?‘:

HEEEEEE S FFLF BRIV

'_l_i—?'—l—i_'l_‘i_lhl_i’_l'_i_l’_l '—i—'l—l——'li—il—i

| ——r riT'r-—'r—- ‘| F;ﬂ 1 |“ r—q '-! F—1~Hi|r—ﬁ ‘mm | (| (| (| (| (o | (D

|

I I IEE =N W*MT—*nﬁﬁm

'_I—"i_l e I_Fl_ﬁhﬁv—!_l'_!r-—]ﬁ _I_‘I—Fhlﬁ
! o — Kl
I

| ‘o | (| (| [f;ﬁ i r—1 ‘o o e (| (| (|
|

FEERERRBECC D qTﬁﬁ_ﬁTﬁ

https://lcamtuf.blogspot.com/2014/11/pulling- jpegs-out-of-thin-air.html
six hours to generate first image, then others in rapid sequence
= general-purpose fuzzing works; improved if format-specific

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

Automatic format detection

afl-analyze tool attempts to classify bytes of input:

[lcamtuf@raccoon afl]$./afl-analyze -i test ~/cut -d" " -f1
afl-analyze 2.00b by <lcamtuf@google.com:>

[+] Read 38 bytes from "test”.
Performing dry run (mem limit = 25 MB, timeout = 1000 ms)...
Analyzing input file (this may take a while)...

no—op block [(Jl] - suspected length field
superficial content [l - suspected cksum or magic int
critical stream - suspected checksummed block
"magic value" section

e 1 1 o 2 ﬁ r
g o o y e
w o r 1 d

u w o
u a

[+] Ana]ys1s complete. Intere;t]ng bits: 15.79% of the input file.
[+] We're done here. Have a nice day

[Mcamtuf@raccoon afl]$ |

Classification of input fields

"No-op blocks": no apparent control flow change
(data payload)
"Superficial content”: some control flow changes
(strings in rich documents)
"Critical stream”: control flow altered in correlated ways
(keywords, magic values, compressed data)
"Suspected length field” — small int causing control flow change
"Suspected cksum or magic int”
"Suspected checksummed block”
"Magic value section”

Performance: fork server

For libraries, usual fuzzing approach is with a simple client program
but: overhead for execve(), linker, library initialization routines

Idea: modify binary to stop after all initialization, before main code

On command from fuzzer, fork() clone of already-loaded program
fast due to copy-on-write

Symbolic execution

Symbolic execution

described since mid-seventies (James C. King 1976, others)

program is executed by a special interpreter, using symbolic inputs
= results in symbolic execution tree
each branch: path condition as formula over symbolic variables
tree traversal stops when path condition becomes unsatisfiable

Can be used to:
attaining high coverage
or try to reach a specific branch

Successful mature technique, hundreds of papers, many tools:
Java Pathfinder, (j)CUTE, CresT, KLEE, Pex, SAGE, ...
for C/C4++, C#, Java, more recently JavaScript

Symbolic Execution Example

1.inta=a,b=B,c=Yy;
2. /I symbolic
3.intx=0,y=0,z=0;
4. if (a) {

5. X=-2;

6.}

7. if(b<5){

8. if(la&&c) {y=1;}
9. z=2;

10.}

11.assert(x+y+z!=3)

Cl/\(B<5) |

x=0, y=0, z=0
I

/a&
X=-2 B<5
| 2N
B<5 SAAY v

v N
_ —aA(B=5)
z=2 v y=1 z=2

| an(@=5) 7| |
v z=2 4
—aA(B<5) Ay

—aA(B<5)Ay

path condition

slide: Jeff Foster, UMD

Constraint solving in symbolic execution

Symbolic execution: improved by advances in satisfiability checking
(fundamental problem in logic)

here: satisfiability modulo theories
incorporates knowledge specific to type of formula:
linear integer/real arithmetic, bitvectors, arrays, strings

Annual SMT competition, continuous advances in performance
(millions of constraints for pure boolean formulas)

Solvers: Z3 (Microsoft Research), CVC (NYU), STP (Stanford),
Yices (SRI), etc.
most open-source

Concolic (concrete + symbolic) execution

symbolic execution is directed by concrete run
keep variable symbolic if possible, else fall back to concrete values
native functions, nonlinear arithmetic, library/system functions

y = hash(x); // can’t solve hash => y becomes concrete
if (x+y>0)

// path 1
else

// path 2

Assume: x = 20; y = hash(20) = 13 = reach path 1
To reach path 2, negate x +y > 0, with concretey (y = 13)
Solver might return, e.g., x = -15

if lucky, -15 4+ hash(-15) < 0, we reach path 2

else execution still follows path 1, retry

= worst-case: degrades to random testing

KLEE: symbolic execution for LLVM

Cadar, Dunbar, Engler. KLEE: Unassisted and Automatic

Generation of High-Coverage Tests for Complex Systems Programs,
OSDI 2008 (best paper)

90%-+ coverage on coreutils + busybox

56 serious bugs in 430 kloc, some bugs 15 years old
simple crash inputs generated for several programs

based on LLVM infrastructure (analyzes LLVM bitcode)
lots of engineering work

path exploration heuristics
efficient branching due to copy-on-write
models for library functions, file system, etc.

Symbolic execution in industry

SAGE: Whitebox Fuzzing for Security Testing

Ella Bounimova Patrice Godefroid David Molnar

Impact: since 2007 How bugs were found

- 500+ machine years (in largest fuzzing lab in the world) (Win7 WEX Security)
- 3.4 Billion+ constraints (largest SMT solver usage ever!)

- 100s of apps, 100s of bugs (missed by everything else...)

- Ex: 1/3 of all Win7 WEX security bugs found by SAGE > . .

- Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCS gegression+ All Othors SAGE
- Millions of dollars saved (for Microsoft and the world) Random testing
- SAGE is now used daily in Windows, Office, etc.

PLDI 2013

REDMOND, WASHINGTON | JUNE 18, 2013 Microsoft Research

From vulnerabilities to exploits

Which bugs are exploitable?

Easy to find functions which are surely unsafe

For cases which are potentially be unsafe, must decide
1) is it really a bug ?
2) can it be exploited 7

Automated Exploit Generation

S. Heelan, Automatic generation of control flow hijacking exploits
for software vulnerabilities, MSc thesis, Oxford, 2009

Two steps:
generate input that executes and exploitable program path
express conditions necessary to transfer control to shellcode

Avgerinos, Brumley et al.:
Automatic Exploit Generation, NDSS 2011
Unleashing Mayhem on Binary Code, IEEE S&P 2012

applied large-scale to Debian code
can generate buffer overflow and format string attacks
(form constraints on symbolic instruction pointer / format string)

checking Debian for exploitable bugs

37,000 programs

16 billion verification queries

~$0.28/bug

~$21/exploit

2,606,000 crashes

14,000 unique bugs

152 new exploits

* [ARCB, ICSE 2014, ACM Distinguished Paper], [ACRSWB, CACM 2014] 1

slide: David Brumley, CMU, 2015

Combining techniques

Driller: Augmenting Fuzzing Through Selective Symbolic Execution
Stephens, Kruegel, Vigna et al. (UC Santa Barbara), NDSS 2016
Key insight: fuzzing is cheap, good overall coverage

Symbolic execution: expensive, path explosion,
but can pass through precise, complex condition

Sample code

1| int check(char =xx, int depth) {

2 if (depth >= 100) {

3 return O;

4]} else {

5 int count = (xx == 'B’) ? 1 : 0;
6 count += check(x+1, depth+1);

7 return count;

8|}

91}

10

11| int main(void) {
12 char x[100];
13 read (0, x, 100);

14

15 if (check(x, 0) == 25)
16 vulnerable () ;

17| }

Listing 4. A program that causes a path explosion under concolic
execution.

Driller: Structure of explored call graph

Fuzzed transitions (O Compartment 1 (found initially)
i - - Concolic #1 transitions (O Compartment 2 (after concolic invocation #1)
. ---=-= Concolic #2 transitions @ Compartment 3 (after concolic invocation #2)
Concolic #3 transitions @ Compartment 4 (after concolic invocation #3)

Fig. 10. Graph visualizing the progress made by Driller in discovering new compartments. Each node is a function; each edge is a function call, but return
edges are excluded to maintain legibility. Node “A” is the entry point. Node “B” contains a magic number check that requires the symbolic execution component
0 resolve. Node “C" contains another magic number check.

Path to vulnerability

Fuzzing helps explore a “compartment” efficiently

Symbolic execution finds “door” between compartments

®—0—0—0—0—0—0—0—0—0—9
Q—O—O—@—O—&—O—.—‘ﬂ—@
o) —0 @0 @ ()@ O
e O O O OO O @& O @

‘ O Compartment 1 © Compartment 2 @ Compartment 3 @ Compartment 4 ‘

Fig. 11 The sequence of compartments through which execution flows for a trace of the crashing input for CGC application 2b03¢fO1. Driller’s ability to “break
into” the fourth compartment (represented by the black nodes) was critical for generating the crashing input. The generated, derandomized crashing input was
“A\X00\x00\x00\x00\x00\ X00\x00\x9¢6\ x00\x00\ x 18\ x04\ x00\ x00\x 18"\ x00\ x00A\x00\ 00\ X00\X00\ X001 X00\x00\ x9¢6)\ x00\ x00\x 19\x04\x00
\x00\x14\x00\x00\x00A\ x00\ xf8\ xff\xff\xec\x00d\x96X \ x0c\ x00\ x06\x08\x00\x00\x 10\x00\x00\x00A ' x00\ x00\ x00\ x00\ x00\ x00\ xfb\ x96X
\x0¢\x00\x02\ x08\x00\ x00\ x18"\ x00\ xX00A\ 00\ xebA \ x00\x00d\x96X \x0c\ x00\x06”. The full exploit specification, conforming to the DARPA CGC
exploit specification format and accounting for randomness, is available in Appendix A,

Fuzzing vs. concolic execution
G. Case Study

Basic Blocks Found Over Time, Over Successive
Invocations of Concolic Execution

600 = Three

=— Two
One

450 l — Zero

300

Blocks explored

150

] 2000 4000 6000 8000

Time (seconds)

Fig. 9. For the binary 2b03cf01, which Driller crashed in about 2.25 hours,
this graph shows the number of basic blocks found over time. Each line
represents a different number of invocations of symbolic execution from zero
to three invocations. After each invocation of symbolic execution, the fuzzer
is able to find more basic blocks.

Bugs by technique

Binaries

Method | Crashes Found

Fuzzing 68

Fuzzing N Driller 68
Fuzzing N Symbolic 13
Symbolic 16

Symbolic N Driller 16

Driller | 77

Where to from here?

Fascinating work, rapid reaction, spectacular advance
strong reliance on theory/logic (advances in SMT solvers)
open-source platforms (angr, BAP, BINSEC, etc.)
engineering, performance, integration of techniques

More good reads:

Yan Shoshitaishvili, Ruoyu Wang, Ch. Kruegel, G. Vigna et al.:
(State of) The Art of War: Offensive Techniques in Binary Analysis,
IEEE S&P 2016

describes http://angr.io/ platform from UCSB

http://angr.io/

