
Bitwise operators. Examples Marius Minea 1

All values are stored in memory using one or several bytes. Bitwise operators allow us to manipulate
the bit patterns in integer values of any size (char, int, unsigned, long, int16_t, uint32_t, etc.) and
use them to encode/decode values in arbitrary ways.

An often-used operation is to obtain the value given by the k least significant bits of a number.
This means we have to ignore all other bits: . . .//////////// . . .︸ ︷︷ ︸

k

Bitwise operators work on all bits of an integer; they cannot create a bit pattern with fewer bits.
To cancel the effect of the bits we don’t want, we perform a bitwise AND with a bit pattern that has
1 on the positions we are interested in, and 0 otherwise: 0 . . . 0 1 . . . 1︸ ︷︷ ︸

k

The value of the integer that has this bit pattern is 2k−1 + . . . + 21 + 20 = 2k − 1. If k is known,
we can simply write this value as an integer constant (it is more readable to do this in hexadecimal
or octal). For example, 25 − 1 is 31, or 0x1F, or 037 .

If k is not a compile-time constant, we can rewrite 2k − 1 using bit operators: (1 << k) - 1, or
as ~(~0 << k). To understand the last pattern: ~0 has all bits 1; shifted left k bits it will have the
lower k bits 0; complemented, we get the lower bits 1, and the rest 0.

Finally, to obtain the integer represented by the last k bits of n, we perform a bitwise AND with
the number constructed above: n & ~(~0 << k) .

Sometimes, we do not need the lower-order k bits, but those starting at some bit position p

(numbered from 0, like the exponents of 2 that the bits correspond to): ////////////.︸ ︷︷ ︸
k

////////////. . .︸ ︷︷ ︸
p

Here, we shift the number right p positions before extracting the lower k bits: n >> p & ~(~0 << k) .

Exercise: Someone wants to represent text using only 5 bits for each character: the values 0 through 31
will encode, in order: \0, space (for any whitespace), comma, dash, dot, ?, the 26 letters (all converted
to lowercase). All other characters are mapped to ? . The groups of 5 bits are packed in as many

bytes as needed, using less significant bits first:
0 1 2 3 4︸ ︷︷ ︸

char 1

5 6 7 0 1︸ ︷︷ ︸
char 2

2 3 4 5 6︸ ︷︷ ︸
char 3

7 0 1 2 3︸ ︷︷ ︸
char 4

. . .

Write a function that takes a string of text and produces a dynamically allocated string with its
5-bit encoding, and another function that decodes and prints a 5-bit-encoded text.
Solution: First, we write two functions that encode and decode a character to/from a 5-bit value:

int charenc(int c)

{

switch (c) {

case ’\0’: return 0;

case ’,’: return 2;

case ’-’: return 3;

case ’.’: return 4;

default: return isspace(c) ? 1 : isalpha(c) ? tolower(c) - ’a’ + 6: 5;

}

}

The function directly expresses the encoding rule: it treats the special characters, then the whitespace;
the 26 letters starting with ’a’ get values 6 to 31; everything else (including ’?’) is encoded as 5.
The function returns an int in the range from 0 to 31 (thus can be represented using 5 bits).

For decoding, we use an array with the characters represented by the values from 0 to 5; the other
values up to 31 represent lowercase letters, with 6 used for ’a’, etc.

int chardec(int e)

{

char dec[6] = "\0 ,-.?";

return e < 6 ? dec[e] : e - 6 + ’a’;

}

To encode a string, we encode each character and add the 5 bits to the bits previously obtained;
once we have gathered 8 bits we store them and advance in the destination string. Thus we need to
remember the bits already encoded and their number.

Bitwise operators. Examples Marius Minea 2

Assume we have already processed 6 source characters. They yield 6 * 5 = 30 bits of encoding.
Of these, 24 bits have already been stored as 3 bytes in the destination string, with 6 bits remaining.
Assume these 6 remaining bits are 0 1 0 1 1 0 , from high to low, and the next character to be

encoded is ’e’. It is encoded as ’e’ - ’a’ + 6 = 4 + 6 = 10, that is, 0 1 0 1 0 . We shift it left

by 6 bits and append (OR) it to the previous 6 bits, the result being 0 1 0 1 0 0 1 0 1 1 0 .

We take the low-order 8 bits 1 0 0 1 0 1 1 0 and store them as a byte in the destination string.

We are left with the top 3 bits, 0 1 0 , and the processing continues.
This is coded in the function below. We need memory for the encodings (5 bits) of all characters

in the string, including the terminator ’\0’. For b bits we need db/8e bytes, i.e., (b + 7)/8. We need
two variables for the encoded bitpattern not yet stored, and the number of bits in it. Every character
adds 5 bits; once 8 bits are reached, one byte is stored and those bits are discarded. Processing is
done up to and including the null terminator byte of the original string.

char *encstr(const char *s)

{

char *d = malloc((5 * (strlen(s) + 1) + 7) >> 3);

if (!d) return NULL;

int bitcnt = 0, bitpart = 0, idx = 0; // bits and part of char already built

do {

bitpart |= charenc(*s) << bitcnt; // put next 5 bits in correct position

if ((bitcnt += 5) > 7) { // have filled one byte

d[idx++] = bitpart; // store the byte

bitpart >>= 8; // get rid of bits stored

bitcnt -= 8;

}

} while (*s++); // exit after encoding \0

if (bitcnt) d[idx++] = bitpart; // store remaining part

return d;

}

Decoding proceeds similarly; this time, we get 8 bits (a byte) at a time from the string, and
process groups of 5 bits. Again, we have a variable for the bitpattern already extracted and yet to be
processed, and another variable for the bit count. Whenever we have less than 5 bits, we get one more
byte and place its bits in higher-order position relative to the existing bits. The cast to unsigned is
needed, otherwise a negative signed char when expanded to an int will be filled with extra bits of 1.
Each iteration consumes 5 bits and shifts the bit pattern 5 positions to the right.

void decstr(const char *s)

{

for (int e, bitcnt = 0, bitpart = 0;; bitpart >>= 5, bitcnt -= 5) {

if (bitcnt < 5) { // get more bits

bitpart |= (unsigned)*s++ << bitcnt; // add to existing ones

bitcnt += 8;

}

if ((e = bitpart & 0x1F)) putchar(chardec(e)); else break;

}

putchar(’\n’);

}

Finally, we combine the functions and check that encoding and then decoding yields the original string.

int main(void)

{

char *enc = encstr("ana are mere multe");

decstr(enc);

free(enc);

return 0;

}

