
Function pointers. Examples Marius Minea 1

Example 1: Function pointers can be used to register functions that will be called by the program at
a later, determined time. The function int atexit(void (*function)(void)); (from stdlib.h)
may be used to register a function (or several, in successive calls) that will be called when the program
terminates – either by returning from main or by calling exit(). The functions can’t have parameters
or results – so they can only access data through global variables. The following program uses such a
function to print the time it has taken to execute.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

void printtime(void)

{

printf("Time used: %g s\n", (double)clock() / CLOCKS_PER_SEC);

}

int main(void)

{

atexit(printtime); // register function printtime to be called at the end

for (int i = 1e8; i--;); // dummy loop to consume time

return 0;

}

In this simple case, the clock() function could have been just called at the end, directly; in general,
the atexit mechanism allows doing some final action(s) (e.g., for cleanup or some program statistics)
regardless of the way the program terminates (perhaps by calling exit() due to an error condition
deep inside other functions).

Example 2 The same mechanism of callback functions (functions that are passed as parameters in
order to be called at a later time) can be used asynchronously, as a reaction to certain events. For
example, programs that run in windowing systems can react to a mouse click or a key pressed.

The GLUT Utility Toolkit built on top of OpenGL provides the function

void glutKeyboardFunc(void (*func)(unsigned char key, int x, int y));

which can be passed a pointer in order to register a function func that will be called everytime a key
is pressed in the current window. When called, func will receive as parameters the character pressed
and the coordinates of the mouse pointer within the window.

The following simple program uses this facility to draw a point colored depending on the key
pressed (r, g or b) at the current mouse pointer location. Moving the mouse and pressing keys will
generate a trail of colored points. To compile and run the program, the OpenGL and GLUT libraries
must be installed. Compile the program with the options -GL -lGLU -lglut when using gcc.

#include <GL/glut.h>

void keypress(unsigned char key, int x, int y)

{

switch(key) { // set RGB color

case ’r’: glColor3f(1, 0, 0); break;

case ’g’: glColor3f(0, 1, 0); break;

case ’b’: glColor3f(0, 0, 1); break;

case ’q’: exit(0);

}

glBegin(GL_POINTS); // subsequent vertex commands will draw points

glVertex2i(x, y); // plot point in current color at mouse coordinates

glEnd(); // end of drawing commands

glFlush(); // force drawing of screen buffer

}

Function pointers. Examples Marius Minea 2

int main(int argc, char *argv[])

{

glutInit(&argc, argv);

glutCreateWindow(argv[0]); // default: 300x300 pixels

glClear(GL_COLOR_BUFFER_BIT); // clear color, default: black

glFlush();

gluOrtho2D(0, 300, 300, 0); // set 2D viewing region for window

glutKeyboardFunc(keypress); // register function to be called on key press

glutMainLoop(); // start event processing

return 0;

}

Example 3: Function pointers may be used to parameterize certain algorithms. In addition to qsort,
the standard C library also provides a function for binary search in an arbitrary sorted array.

We start by implementing such a function for a particular case, an array of real numbers (double).
The function takes a number to search, the array an its size (assumed ≥ 1) and returns a pointer to
the element if found in the array, or NULL otherwise.

double *binsrch(double x, double a[], size_t cnt)

{

if (cnt == 1) return x == *a ? a : NULL;

size_t half = cnt / 2;

return x < a[half] ? binsrch(x, a, half) : binsrch(x, a + half, cnt - half);

}

If the array has size 1, the value is either at *a (i.e., a[0]) or does not exist. Else, the array is divided
in half. If the value is less than the element at halfpoint, it is searched in the lower part of the array
(excluding the halfpoint); else, it is searched in the upper part, starting at the halfpoint. Care must
be taken to treat all boundary cases correctly. The code can also be easily written using a loop.

To make this code work with arbitrary arrays, we must make the following changes:

• the key to be searched for can no longer be given directly (since there is no type for arbitrary
values in C), but through its address, a void * (pointer to unspecified type).

• the array and return value are likewise no longer given as a double * but as a void *

• elements can no longer be compared directly (with == or <) but with a comparison function
passed as parameter. Like for qsort, the function takes two element addresses (as void *) and
returns an int as the result of the comparison (< 0, 0, or > 0).

• Since there is no pointer arithmetic on void *, the size of an array element has to be explicitly
given, so the new boundaries can be computed (a + half)

With these changes, the code becomes:

void *bsearch(void *x, void *a, size_t cnt, size_t size,

int (*cmp)(const void *, const void *))

{

if (cnt == 1) return cmp(x, a) == 0 ? a : NULL;

size_t half = cnt / 2;

void *mid = (char *)a + half * size; // cast to char * for pointer arithmetic

return cmp(x, mid) < 0 ?

bsearch(x, a, half, size, cmp) : bsearch(x, mid, cnt - half, size, cmp);

}

This function is part of the C standard library (declared in stdlib.h). We will now discuss how
to use it, highlighting the difference between an array of character arrays (matrix) and an array of
pointers to strings.

Function pointers. Examples Marius Minea 3

For the first case, an example sorted array is

#define CNT 4

#define MAXL 6

char strmat[][MAXL] = {"four", "one", "three", "two" }; // array of arrays

The strings are stored in a contiguous memory region of 24 (4 * 6) characters. Pointer arithmetic:
strmat+0, strmat+1, etc. produces char (*)[6] addresses which are MAXL (6) bytes apart, the strings
are stored directly at these addresses. Since the comparison function receives directly the addresses
where the strings are stored, we can use strcmp as-is, appropriately cast to fit as parameter for bsearch:

char *p = bsearch("foo", strmat, CNT, MAXL, // search in matrix

(int (*)(const void *, const void *)strcmp);

A second case is when storing an array of pointers (similar to argv[] in main):

char *ptrarr[] = {"four", "one", "three", "two" }; // array of pointers

Here, the array itself does not contain strings. The elements ptrarr[0], ptrarr[1], etc. are
addresses (char *); at these addresses in turn, we find the strings. Thus, the comparison function of
bsearch will receive char ** addresses (ptrarr+0, ptrarr+1, etc.) and we need to write a different
comparison function that dereferences such a char ** pointer to get a char * and pass it to strcmp:

int pstrcmp(const void *p1, const void *p2)

{

return strcmp(*(char **)p1, *(char **)p2);

}

and the first parameter (the key searched) has also to be the address of a char * (string):

char **pp = bsearch(&"foo", ptrarr, CNT, sizeof(char *), pstrcmp);

Exercise 4: (suggested): Write a function that computes the root of a continuous function in a given
interval using the bisection method (Lab 4, problem 2). The function whose root is computed is passed
as parameter (together with the interval and the precision).

Exercise 5: (suggested): Write a program that draws any of the fractals discussed in class (box fractal,
Koch curve, Sierpiński triangle, etc.), producing either an SVG or a PostScript file (given an option).

The two formats differ in the precise syntax to draw vector graphics, but the concepts are the
same. In both cases we use four commands: move (the cursor) and line (from cursor to given point),
where coordinates can be absolute or relative (to the cursor).

For SVG, the syntax is command x y, where command can be M or L (absolute), m or l (relative).
For PostScript, the syntax is postfix: x y command, where the commands are moveto, lineto, rmoveto
and rlineto.

For SVG, the minimal header is
<?xml version="1.0"?>

<svg version="1.1" xmlns="http://www.w3.org/2000/svg">

and the path to be drawn needs a drawing style besides the actual path element (d=):
<path fill="none" stroke="black" d=" . . . "/>
The closing tag </svg> ends the file.
A PostScript file starts with %!PS , a path starts with newpath and ends with stroke, and everything
is displayed with showpage.

Define a structure that holds pointers to the four drawing functions, each taking two coordinates
as parameters. Each of the drawing functions will print out the corresponding command, either in
PostScript or SVG. The fractal function receives as parameter (a pointer to) the structure for the
appropriate file type, depending on the option given. The standard beginning and ending text can be
coded directly, or also through start/end functions, as you prefer.

