
Computer Programming

User-defined types

Marius Minea
marius@cs.upt.ro

3 December 2013

mailto:marius@cs.upt.ro

Structure types
group logically connected elements of potentially different types
can use/assign/pass/return entire aggregate value, or parts of it
struct len { // type is ’struct len’, ’len’ = structure tag

double val;
char unit[3];

};
struct len d1 = { 60, "km" }; // declaration + initialization

struct vect { // type is ’struct vect’
double x, y;

} v1, v2; // declares two variables of this type

Structure elements are called fields
of any type, but NOT the same structure type (NOT recursive)

Using fields: var name.field name
the dot . is the postfix selection operator

struct vect p1; p1.x=2; p1.y=3; printf("%f %f\n", p1.x, p1.y);

Use structures to work with compound values

Structures may be assigned: struct vect v1={2, 3}, v2; v2=v1;

We may write compound structure values: use (type cast)
struct vect v1; v1 = (struct vect){-4, 5};

Structures may be passed to and returned from functions
for large structures should pass/return pointers (less copying)

struct vect add(struct vect v1, struct vect v2) {
struct vect v;
v.x = v1.x + v2.x; v.y = v1.y + v2.y;
return v;

}

We may NOT compare structures with logical operators (==, !=)
⇒ must compare field by field: if (v1.x==v2.x && v1.y==v2.y)...
Reason: alignment in memory may cause spaces between fields
value of these hidden bytes is undetermined ⇒ don’t use memcmp

Structures and arrays

In C, aggregated (compound) types may be combined arbitrarily
arrays of structures, structures with array or structure fields, etc.

Define types to logically group data
E.g. replace two related arrays of same range by array of structures:
char* name_mo[12] = { "January", /* ... , */ "December" };
char day_mo[12] = { 31, 28, 31, 30, /* ... , */ 30, 31 };
// better:
struct month {

char *name; // pointer to string constant
int days;

};
struct month mo[12] = {{"January",31}, ..., {"December",31}};

Structures and typedef

typedef allows us to give new names to existing types
General form: typedef existing-type new-type-name;

(like variable declaration + typedef in front ⇒ names a type)
e.g. typedef double real; typedef struct vect vect_t;
typedef int (*cmpfun)(const void *, const void *);

We can give the name directly in the type definition
typedef struct student { /*some fields */} student_t;

may omit structure tag (after struct) and use just new name
typedef struct { /*some fields */} student_t;

or separately define synonym and structure type (in either order)
struct student { /*some fields */}; //defines type
typedef struct student student_t; //defines synonym

Structures and strings

typedef struct { //
char name[64]; // fixed-length array
char *addr; // variable-length, only ADDRESS, not memory

} student_t; // declares name for structure type
student_t s;

In s.name we can copy or read a string:
strcpy(s.name, "Stefanovici"); //NOT s.name = ...
if (scanf("%63s", s.name) == 1) ...

To s.addr, we must assign a valid address
a string constant: s.addr = "str. Linistei 2";
dynamically allocated memory:
if (fgets(buf, sizeof(buf), stdin) s.addr = strdup(buf);

Field names are only visible inside the structure
⇒ cannot use fieldname by itself, only varname.field
⇒ different structure types can have fields with same name

Pointers to structures

Like any variable, a structure can be accessed through a pointer:
struct student s, *p = &s; (*p).final_grade = 9.50;

The -> operator is equivalent with indirection followed by selection:
pointer->fieldname is same as (*pointer).fieldname

Operators . and -> have the highest precedence, like () and []

p->x++ means (p->x)++ -> has priority
++p->x means ++(p->x) -> has priority
*p->x means *(p->x) -> has priority
*p->s++ means *((p->s)++) ++ has priority over *

Recursive data structures

A structure field may not be a structure of the same type
size of the structure would be undefined/infinite

But can have address of the same type of structure (a pointer)
⇒ recursive, linked datastructures (lists, trees, etc.)
struct wl { // struct wl incompletely defined type at this point

char *word; // word: the actual data
struct wl *next; // pointer to same type of structure

}; // type definition is now complete

Binary tree with integer nodes
typedef struct t tree_t; // tree_t is name for incomplete type struct t
struct t {

int val;
tree_t *left, *right; // use typedef name

}; // type struct t now complete, same as tree_t

Structures with bitfields

We usually want to represent information as compactly as possible
but don’t use too restrictive assumptions! (see Y2K problem)

date = 32-bit int: sec, min (0-59): 6 bits, hour (0-23), day (1-31):
5 bits, month (1-12): 4 bits, year (1970 + 0-63): 6 bits
struct date { // structure with bitfields

unsigned sec : 6, min : 6; // indicates bit count
unsigned hour : 5, day : 5; // integer types allowed
unsigned month: 4;
unsigned year: 6;

} data = {0, 0, 17, 19, 5, 39 }; // 17:00:00, 19.05.(1970+39)

We can directly write:
printf("%u.%u\n", data.day, data.month);

Nameless fields can control space used: int: 2; //2 bits
or force storing data starting in the next byte int: 0;

Structures with flexible array members
Sometimes the size of an array field is not known statically
⇒ last member of a structure may be an incompletely defined array
typedef struct {

char *fname;
unsigned argc; // number of args
int args[]; // default length is zero

} func_t; // type for a function of integers

When declaring func_t f; the array has length 0 (no elements)
But, can dynamically create a structure of the desired size:
func_t *fp = malloc(sizeof(func_t) + n * sizeof(int));}
// or: ... + sizeof(int [n])
if (fp) {

fp->argc = n;
for (int i = 0; i < n; ++i)

fp->args[i] = ...
}

Enumeration type

gives names to integer values (constants)
⇒ use when names are more suggestive than integers
enum univ_mo {jan=1, feb, mar, apr, may, jun, oct=10, nov, dec};
defines type enum univ_mo (the keyword is part of the type name)
Default: increasing sequence of values, starting at 0
Can explicitly specify values (restarts count); values may repeat
An enumeration type is an integer type ⇒ values used as ints
enum {Su, M, Tu, W, Th, F, Sa} day_t; // anonymous type
int work_hours[7]; // per weekday
for (int day = M; day <= F; ++day) work_hours[day] = 8;

Enumeration constants are used by themselves
⇒ A constant name may NOT be used in distinct enumerations

Unions
Used to store a value which may have one of several different types
Syntax: as for structures, but with keyword union
List of fields is a list of variants

a structure contains all declared fields
a union variable contains exactly one variant

(type size given by that of largest type)
struct {

enum { INT, REAL, STR } type; // remembers which variant
union { // anonymous union type

int i;
double r;
char *s;

} u;
} v; // three variants for a value
char s[32]; if (scanf("%31s", s) == 1) {

if (isdigit(*s)) // starts with digit or contains dot
if (strchr(s,’.’)) { sscanf(s, "%lf", &v.u.r); v.type=REAL; }
else { sscanf(s, "%d", &v.u.i); v.type = INT; }

else { v.u.s = strdup(s); v.type = STR; }
}

