
Computer Programming

Exception handling. Review

Marius Minea
marius@cs.upt.ro

10 December 2013

mailto:marius@cs.upt.ro

Why exceptions ?

Error handling is absolutely needed for any environment interaction
but it can complicate code
and obscure the main functionality

Error situations can happen anywhere in the “normal” control flow
end-of-file, read error, insufficient memory
or user-level errors (input does not match format)

Functions must be designed to return error conditions
complicates their interface

User code has to check for errors at all points
and propagate recovery up from from deep within processing

Exceptions as a programming language feature
Exceptions are a control flow mechanism

different from function call/return, breaking from loops
can transfer control across functions

Exceptions are raised and caught (handled)
can be raised by a library function
or by the user

Imagine a statement that says:
setup exception-name in protected-code with handler-code
When this is executed, the runtime system sets up things so if that
particular exception appears (is raised/thrown) when executing
protected-code, control is transferred to the handling code.
If nothing happens, execution proceeds with the next statement.

Syntax varies:
Java: try protected-code catch (exception) handler-code
ML: try protected-code with exception -> handler-code

Exceptions in C: setjmp/longjmp

#include <setjmp.h>
jmp_buf myexc;
...
int val; // value transmitted with exception
if ((val = setjmp(myexc))) {

// exception was thrown, handle here
} else {

// protected code where exception is caught
}
...
// somewhere else, usually in another function
longjmp(myexc, val); // throws myexc with param val

