
Computer programming

Application: SAT checking

Marius Minea
marius@cs.upt.ro

7 January 2014

mailto:marius@cs.upt.ro

Problem: Satisfiability of a propositional formula

Given a formula in propositional logic, is there a truth assignment
(for its propositions) that makes the formula true ?

i.e., is the formula satisfiable ?

(a ∨ ¬b ∨ ¬d)
∧ (¬a ∨ ¬b)
∧ (¬a ∨ c ∨ ¬d)
∧ (¬a ∨ b ∨ c)

Usually, formulas are given/converted to conjunctive normal form:
a conjunction (AND) of clauses
each clause is a disjunction (OR) of literals
a literal is a positive or negated proposition

Why is SAT-checking important ?
Computers are built from logic circuits

which implement the same functions as in Boolean logic
⇒ to check equivalence of two function implementations f1 and f2
check if f1(v1, ..., vn)⊕ f2(v1, ..., vn) is UNSAT (f1, f2 never differ)

Numbers are represented in base 2 (Boolean values 0 or 1, F or T)
Arithmetic is implemented in logic circuits
unsigned add(unsigned a, unsigned b) {

// a ˆ b: sum, a & b: carry (must shift left)
return b ? add(a ˆ b, (a & b) << 1) : a; // base: a + 0 = a

}

Sets can be represented as bitstrings of Boolean values
for each potential element: is it in the set or not ?

Anything in a computer ultimately has a bit representation
⇒ can use SAT-checking for decision problems, constraint solving,
search, planning, software checking and testing, genetics, etc.

Why is SAT-checking important ?

It’s the first problem proved to be NP-complete.
(believed not to have a solution in polynomial time)

P = class of problems solvable in polynomial time (in problem size)
NP = class of problems where an answer can be checked in
polynomial time (checking a solution is easier than finding it)

NP-complete: the hardest problems in NP
if a polynomial solution to any of them were found,
then any problem in NP could be solved in polynomial time

P = NP? is one of the most fundamental questions in CS

Classic NP-complete problems: maximal clique, graph coloring,
knapsack, subset sum, vertex cover,

How do we check satisfiability?

Simplification rules:

R1 A clause with a single literal ⇒ has only one feasible value
in a ∧ (¬a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c) a must be 1

in (a ∨ b) ∧ ¬b ∧ (¬a ∨ ¬b ∨ c) b must be 0

R2 If a literal is 1, delete clauses where it appears (they are true)
If a literal is 0, delete literal in all clauses (makes no difference)

Examples above simplify to:
a ∧ (¬a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c) a=1→ (b ∨ c) ∧ (¬b ∨ ¬c)

(a ∨ b) ∧ ¬b ∧ (¬a ∨ ¬b ∨ c) b=0→ a
(thus a = 1, formula is SAT)

How do we check satisfiability?

R3) If no more clauses, done (we have a satisfying assignment)
If we get an empty clause, formula is unsatisfiable (can’t be true)

a ∧ (¬a ∨ b) ∧ (¬b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c)
a=1→ b ∧ (¬b ∨ c) ∧ (¬b ∨ ¬c)
b=1→ c ∧ ¬c c=1→ ∅ (¬c becomes empty clause ⇒ UNSAT)

What if no more simplifications can be done ?
a ∧ (¬a ∨ b ∨ c) ∧ (¬b ∨ ¬c) a=1→ (b ∨ c) ∧ (¬b ∨ ¬c) ??

R4) Choose a variable and try both values (case splitting)
I try value 1 (true)
I try value 0 (false)

A solution in any case is good.
If no case has a solution, formula is UNSAT

Towards an algorithm

Need to manipulate
I list of clauses (the formula)
I set of already assigned variables (initially empty)

Rules 1 and 2 reduce the problem to a simpler one
(fewer unknowns or fewer clauses or simpler clauses)

Rule 3 gives the stopping condition

Rule 4 reduces problem to two simpler problems (one variable less)
⇒ naturally recursive solution

DPLL Algorithm (Davis-Putnam-Logemann-Loveland)

function solve(env: lit set, clauses: lit list list)
(newenv, clauses) = simplify(env, clauses) (* R1, R2 *)
if clauses = empty list then

return env; (* variable assignment *)
if clauses has empty clause then

return false; (* unsatisfiable *)
if clauses contains single literal a then

solve (env with a=true, clauses)
else

return solve (env with a=false, clauses)
or solve (env with a=true, clauses);

Current optimized SAT-checkers can handle ∼ 106 variables

Implementation: need lists and sets

Data structures:
I list of clauses (list of list of literals)
I set of true literals

Processing
I membership check: is a literal in set of assigned literals ?
I add a literal to set of assigned literals
I traverse literals in a clause
I delete literal in a clause
I delete clause from a list (formula)

