Computer programming
 Application: SAT checking

Marius Minea
marius@cs.upt.ro

7 January 2014

Problem: Satisfiability of a propositional formula

Given a formula in propositional logic, is there a truth assignment (for its propositions) that makes the formula true ?
i.e., is the formula satisfiable?

$$
\begin{aligned}
& (a \vee \neg b \vee \neg d) \\
\wedge & (\neg a \vee \neg b) \\
\wedge & (\neg a \vee c \vee \neg d) \\
\wedge & (\neg a \vee b \vee c)
\end{aligned}
$$

Usually, formulas are given/converted to conjunctive normal form:
a conjunction (AND) of clauses
each clause is a disjunction (OR) of literals
a literal is a positive or negated proposition

Why is SAT-checking important?

Computers are built from logic circuits
which implement the same functions as in Boolean logic
\Rightarrow to check equivalence of two function implementations f_{1} and f_{2} check if $f_{1}\left(v_{1}, \ldots, v_{n}\right) \oplus f_{2}\left(v_{1}, \ldots, v_{n}\right)$ is UNSAT $\left(f_{1}, f_{2}\right.$ never differ)

Numbers are represented in base 2 (Boolean values 0 or $1, \mathrm{~F}$ or T)
Arithmetic is implemented in logic circuits
unsigned add(unsigned a, unsigned b) \{
// a ^ b: sum, a \& b: carry (must shift left)
return b ? add (a ^ b, (a \& b) << 1) : a; // base: a + 0 = a \}

Sets can be represented as bitstrings of Boolean values for each potential element: is it in the set or not ?

Anything in a computer ultimately has a bit representation
\Rightarrow can use SAT-checking for decision problems, constraint solving,
search, planning, software checking and testing, genetics, etc.

Why is SAT-checking important?

It's the first problem proved to be NP-complete.
(believed not to have a solution in polynomial time)
$P=$ class of problems solvable in polynomial time (in problem size)
$N P=$ class of problems where an answer can be checked in polynomial time (checking a solution is easier than finding it)
$N P$-complete: the hardest problems in NP
if a polynomial solution to any of them were found, then any problem in NP could be solved in polynomial time
$P=N P ?$ is one of the most fundamental questions in CS
Classic NP-complete problems: maximal clique, graph coloring, knapsack, subset sum, vertex cover,

How do we check satisfiability?

Simplification rules:
R1 A clause with a single literal \Rightarrow has only one feasible value in $\quad a \wedge(\neg a \vee b \vee c) \wedge(\neg a \vee \neg b \vee \neg c)$ a must be 1
in $\quad(a \vee b) \wedge \neg b \wedge(\neg a \vee \neg b \vee c)$ b must be 0

R2 If a literal is 1 , delete clauses where it appears (they are true) If a literal is 0 , delete literal in all clauses (makes no difference)
Examples above simplify to:
$a \wedge(\neg a \vee b \vee c) \wedge(\neg a \vee \neg b \vee \neg c) \quad \xrightarrow{a=1} \quad(b \vee c) \wedge(\neg b \vee \neg c)$
$(a \vee b) \wedge \neg b \wedge(\neg a \vee \neg b \vee c) \xrightarrow{b=0} \quad a$
(thus $a=1$, formula is SAT)

How do we check satisfiability?

R3) If no more clauses, done (we have a satisfying assignment) If we get an empty clause, formula is unsatisfiable (can't be true)

$$
a \wedge(\neg a \vee b) \wedge(\neg b \vee c) \wedge(\neg a \vee \neg b \vee \neg c)
$$

$\xrightarrow{a=1} b \wedge(\neg b \vee c) \wedge(\neg b \vee \neg c)$
$\xrightarrow{b=1} c \wedge \neg c \quad \xrightarrow{c=1} \quad \emptyset(\neg c$ becomes empty clause \Rightarrow UNSAT $)$
What if no more simplifications can be done ?
$a \wedge(\neg a \vee b \vee c) \wedge(\neg b \vee \neg c) \quad \xrightarrow{a=1}$
$(b \vee c) \wedge(\neg b \vee \neg c) \quad ? ?$

R4) Choose a variable and try both values (case splitting)

- try value 1 (true)
- try value 0 (false)

A solution in any case is good.
If no case has a solution, formula is UNSAT

Towards an algorithm

Need to manipulate

- list of clauses (the formula)
- set of already assigned variables (initially empty)

Rules 1 and 2 reduce the problem to a simpler one (fewer unknowns or fewer clauses or simpler clauses)

Rule 3 gives the stopping condition
Rule 4 reduces problem to two simpler problems (one variable less)
\Rightarrow naturally recursive solution

DPLL Algorithm (Davis-Putnam-Logemann-Loveland)

function solve(env: lit set, clauses: lit list list)
(newenv, clauses) $=$ simplify (env, clauses) (*R1, R2 *)
if clauses = empty list then
return env; (* variable assignment *)
if clauses has empty clause then return false; (* unsatisfiable *)
if clauses contains single literal a then solve (env with a=true, clauses)
else
return solve (env with a=false, clauses)
or solve (env with a=true, clauses);
Current optimized SAT-checkers can handle $\sim 10^{6}$ variables

Implementation: need lists and sets

Data structures:

- list of clauses (list of list of literals)
- set of true literals

Processing

- membership check: is a literal in set of assigned literals ?
- add a literal to set of assigned literals
- traverse literals in a clause
- delete literal in a clause
- delete clause from a list (formula)

