
Computer Programming

Pointers

Marius Minea
marius@cs.upt.ro

12 November 2013

mailto:marius@cs.upt.ro

Pointers are addresses

Any lvalue (variable x, array element, structure field) of type T
has an address &x of type T * where its value is stored.

An address is a numeric value, but is not an int / unsigned .
It may be printed with format specifier "%p" in printf

Valid addresses are non-null. NULL indicates an invalid address
(void *)0 0 cast to type void *

We need to know how to
1. declare a variabile of pointer (address) type
2. obtain a pointer (address) value
3. use a pointer (address) value

To use pointers correctly, need to (like for all variables/values):
1. be aware of their type
2. use the right operators / functions

Declaring, initializing and assigning pointers
Declaring pointers: type *ptrvar;
⇒ the variable ptrvar may contain the address of a value of type

Examples: char *s; int *p;

When declaring several pointers, need * for each of them:
int *p, *q; two integer pointers
int *p, q; one pointer p and one integer q

Obtaining pointers
An array name is a pointer: int tab[10], *a = tab;
same as: int tab[10]; int *a; a = tab;

In T tab[10]; array name tab has type T *

The address operator & yields a pointer: int n, *p = &n;
or: int n; int *p; p = &n;

A string constant has type pointer: char *s = "test";
same as: char *s; s = "test";

Derefencing a pointer

The dereferencing (indirection) operator * prefix operator
operand: pointer;
result: object (variable) indicated by pointer

*p is an lvalue (can be assigned, like a variable)
can also be used in an expression, like any value of that type

The * operator is the inverse of &:
*&x is the object at address &x, thus x

&*p is the address of the value at address p, thus p

int x, y, *p = &x; y = *p; /* y = x */ *p = y; //x = y

& and * have opposite effect on types
x has type T ⇒ &x has type T *

p has type T * ⇒ *p has type T

Declaration and indirection

declaration T * p; may be read:
T * p; p has type T *

T *p; *p has type T
char **s; address of char addr
char *t[8]; array of 8 char addr

Variable Value Address
int x = 5; 5 0x408

...
int *p=&x; 0x408 0x51C

...
int **p2=&p; 0x51C 0x9D0

WARNING: A declaration with initializer is NOT an assignment !
int t[2] = { 3, 5 }; initializes t. WRONG: t[2] = { 3, 5 };

int x, *p = &x; is like int x; int *p; p = &x;
(p is initialized/assigned, NOT *p). *p = &x is a type error!
char *p = "sir"; is char *p; p = "sir"; WRONG: *p = ”sir”;

The * in declarations is NOT an indirection operator!
* is written next to the declared variable, but belongs to the type!

Using pointer parameters: assignment in functions

A function CANNOT change a variable passed as parameter
because the value is passed, not the variable itself

But, with a variable’s address p, we may use its value: ...= *p;
assign it: *p =...;

Having a variable’s address, a function may write to it (e.g. scanf).
void swap (int *pa, int *pb) { // swaps values at 2 addresses

int tmp; // keeps first changed value
tmp = *pa; *pa = *pb; *pb = tmp; // integer assignments

}

Ex.: int x = 3, y = 5; swap(&x, &y); // now x = 5, y = 3

We use addresses as function parameters:
to pass arrays (can’t pass array contents in C)
to return several values (return allows only one)
e.g. min and max of an array; result and error code

ERROR: no initialization

It’s an ERROR to use any uninitialized variable
int sum; for (i=0; i++ < 10;) sum += a[i]; // initially??
⇒ program behavior is undefined (best case: random initial value)

Pointers must be initialized before use, like any variables
with the address of a variable (or another initalized pointer)
with a dynamically allocated address (later)

ERROR: int *p; *p = 0; ERROR: char *p; scanf("%20s", p);
p is uninitialized (best case NULL, if global variable)

⇒ value will be written to unknown memory address
⇒ memory corruption, security vulnerability; program crash is
luckiest case!

WARNING: a pointer is not an int. WRONG: int *p = 640; !
Address space is determined by system, not user
⇒ CANNOT choose an arbitrary address we want

A pointer is like a post-it note
declare = get fresh one
can write an address on it
but initially there is none

A variable is like a building
has an address
address fits on post-it
building does not fit
address not enough to build, need memory space

Programs process data, addresses are just helpers
⇒need actual data (vars, arrays) to get addresses from

Arrays and pointers

The name of an array is a constant address
declaring an array allocates a memory block for its elements
the array’s name is the address of that block (of first element)

By declaring type a[LEN], *pa; we may assign pa = a;
&a[0] is equivalent with a and a[0] is equivalent with *a

Differences: address a is a constant (array has fixed address)
⇒ we can’t assign a = address, but we may assign pa = address
pa is a variable ⇒ uses memory and has an address &pa

a
R a[0] a[1] a[2] a[3] a[4] a[5]

6 6 6
address
(hex) 5C0 5D0 5E0

. . .

pa
R

5C0 int a[6];
int *pa = a;

Arrays and pointers (cont’d)

In function declarations, these are the same (first becomes second):
size_t strlen(char s[]); becomes size_t strlen(char *s);

As array declarations they are different!
Array: char s[] = "test"; s[0] is ’t’, s[4] is ’\0’ etc.
s is a constant address (char *), not a variable in memory
CANNOT assign s = ... but may assign s[0] = ’f’
sizeof(s) is 5 * sizeof(char) &s is s
but with different type, address of 5-char array: char (*)[5]

Pointer: char *p = "test"; p[0] is ’t’, p[4] is ’\0’ (same)
p is a variable of address type (char *), has a memory location
CANNOT assign p[0] = ’f’ (”test” is a string constant)
can p = s; and then p[0] = ’f’; can assign p = "ana";
sizeof(p) is sizeof(char *) &p is NOT p
⇒ WRONG: scanf("%4s", &p); RIGHT: scanf("%4s", p);

Pointer arithmetic
A variable v of a given type takes up sizeof(type) bytes
⇒ &v + 1 is the address after the space allocated to v

numerically larger than &v by sizeof(type) bytes
1. Add/subtract pointer and integer: like address of array element
a + i means &a[i] and *(a + i) means a[i] 3[a] is a[3]
increment ++a, a++: a becomes a + 1 before/after evaluation
char *endptr(char *s) { // returns pointer to end of s

while (*s) ++s; // stops at null character ’\0’
return s;

}

2. Difference: only for pointers of same type (and in same array!)
= number of objects of type that fit between the two addresses
To get the number of bytes, convert pointers to char * (type cast):

p - q == ((char *)p - (char *)q) / sizeof(type)

No other arithmetic operations between pointers are defined!
May use comparison operators (==, !=, <, etc.)

Pointers and indices
same meaning: “to indicate” = “to point to”
To write a[i], need two variables and one addition (base + offset)

and multiplication with size of type (if not 1)

Simpler: directly with pointer to element &a[i] (a+i)
increment pointer rather than index when traversing array

char *strchr_i(const char *s, int c) { // search char in s
for (int i = 0; s[i]; ++i) // traverse string up to ’\0’

if (s[i] == c) return s + i; // found: return address
return NULL; // not found

}

char *strchr_p(const char *s, int c) {
for (;*s; ++s) // use parameter for traversal

if (*s == c) return s; // s points to current char
return NULL; // not found

}

Pointers and multidimensional arrays
A bidimensional array (matrix) is declared as type a[DIM1][DIM2];
a[i] is address (const type *) of an array (line) of DIM2 elements
a[i][j] is jth element in array a[i] of DIM2 elements
&a[i][j] or a[i]+j is DIM2*i+j elements after address a
⇒ a function with array parameter needs all dimensions except first
⇒ must declare as funtype f(eltype t[][DIM2]);

char t[12][4]={"jan",...,"dec"}; char *p[12]={"jan",...,"dec";}
t is matrix (2-D char array) p is array of pointers

j a n \0
f e b \0

...
d e c \0

0x460 −→ j a n \0
0x5C4 −→ f e b \0

...
0x9FC −→ d e c \0

t uses 12 * 4 bytes p uses 12*sizeof(char *) bytes
(+ 12*4 bytes for the string constants)

t[6] = ... is WRONG p[6]="july" changes an address
t[6] is constant address of line 7 (element 7 from pointer array p)
(can do str(n)cpy(t[6], ...))

Command line arguments
command line: program name with arguments (options, files, etc.)
gcc -Wall -o prog prog.c ls directory cp file1 file2

main can access command line if declared with 2 args (only these):
int argc number of words in command line (arguments + 1)
char *argv[] array of argument addresses (strings)
#include <stdio.h>
int main(int argc, char *argv[]) { // or char **argv (same)

printf("Program name: %s\n", argv[0]);
if (argc == 1) puts("Program called with no arguments");
else for (int i = 1; i < argc; i++)

printf("Argument %d: %s\n", i, argv[i]);
return 0;

}
argv[0] (first word) is program name, thus argc >= 1
array argv[] ends with a NULL element, argv[argc]

Run a command from program: int system(const char *cmdline)
returns -1 if can’t run, or exit code of program

Formatted string reading/writing/conversions
Variants of printf/scanf with strings as source/destination
int sprintf(char *s, const char *format, ...);
int sscanf(const char *s, const char *format, ...);

sprintf has no limitation ⇒ may overflow buffer. Use instead:
int snprintf(char *str, size_t size, const char *format, ...);
writing is limited to size chars including \0 ⇒ safe option

Converting strings to numbers
int n; char *s;
if (sscanf(s, "%d", &n) == 1) ... //read correctly

(but we don’t know where processing of string stopped)
long int strtol(const char *nptr, char **endptr, int base);

assigns to *endptr the address of first unprocessed char
char *end; long n = strtol(s, &end, 10); base 10 or other
also strtoul for unsigned long, strtod for base 10 double
int n = atoi(s); returns 0 on error, but also for "0"

use only when string known to be good

Function pointers
Sometimes we wish to call different functions in a program point
Example: array traversal with various kinds of processing
for (int i = 0; i < len; ++i) f(&tab[i]); various functions f

A function name is its address. Compare declarations:
function: restype fct (type1, . . . , typeN);
function pointer: restype (*pfct) (type1, . . . , typeN);

We may assign pfct = fct; the name of a function is its address

int fct(void); declares a function returning int
int (*fct)(void); pointer to function returning int

CAUTION! Need parantheses around (*pointer), otherwise:
int *fct(void); is a function returning pointer to int
Declare pointer type to make declarations of that type easier:
typedef in front of a declaration declares type name, not variable
typedef void (*funptr)(void); pointer to void function
funptr funtab[10]; array of void function pointers

Using function pointers

Example: standard quicksort function qsort (stdlib.h)

void qsort(void *base, size_t num, size_t size,
int (*compar)(void *, void *));

address of array to sort, element count and size
address of comparison function, returns int <, = or > 0)

has void * arguments, compatible with pointers of any type
typedef int (*comp_t)(const void *, const void *); // cmp fun
int intcmp(int *p1, int *p2) { return *p1 - *p2; }
int tab[5] = { -6, 3, 2, -4, 0 }; // array to sort
qsort(tab, 5, sizeof(int), (comp_t)intcmp); // sort ascending

Also: binary search for key in sorted array
void *bsearch(const void *key, const void *base, size_t nmemb,

size_t size, int (*compar)(const void *, const void *));

