Computer Programming
File 1/0

Marius Minea

marius@cs.upt.ro

28 November 2016


mailto:marius@cs.upt.ro

Files and streams

A file is a data resource on persistent storage (e.g. disk).
File contents are typically sequences of bytes.

A stream is a program'’s view (logical view) of a file, also as
sequence of characters (bytes).

To work with files, a program must

1. associate a stream with a file, by opening the file.
A stream is associated with the C datatype FILE *

2. work with the stream, just like with stdin and stdout
(two standard streams), with the same or similar functions

3. finish by closing the file

All functions discussed are in stdio.h unless noted

That's it!



Simple: show contents of text file

File name is 15t commandline argument (check that argc is 2)

#include <stdio.h>

int main(int argc, char *argv[]) {
FILE *f;
char buf [80];
if (argc == 2 && (f = fopen(argv[1], "r"))) {
while (fgets(buf, sizeof (buf), f)) fputs(buf, stdout);
fclose(f);
} // else report error

3



Text and binary streams

Text files are files with human-readable content:
.txt files, programs .c, .c++, web pages .html, .xml files, etc.

Text streams contain characters grouped in lines terminated by \n

Conversions may occur in reading/writing text streams.
e.g. end of line is \r\n in Windows vs. \n in Unix
Standard guarantees one-to-one correspondence if:
text contains only printable chars, tab and newline
no newline is immediately preceded by spaces
last character is a newline

Binary files are not human-readable as character sequences:
.exe, .mp3, though they may contain text: .doc, .pdf

Binary streams record internal data as-is .
The sequence of characters read is exactly the same as was written

= Any (text) file may also be opened as binary stream



File opening modes

r: open for reading (file must exist)

w: open for writing (truncated to length 0 if existing, else created)

a: open for appending (writing at end of file; created if inexistent)
any writes go to current end-of-file, regardless of using fseek

First character (r, w, a) of opening mode may be followed by:
+ (r+, w+, a+): open as stated, but can use for input and output
must position (fseek) for write after read, unless EOF
must position or fflush for read after write
a+: initial read position implementation-defined (glibc: at start)

b: opens binary file (otherwise: text; no explicit text mode)

x: (eXclusive) may be last char only in w mode
file must not exist; no shared access allowed (if system support)

Examples: rb+ (read/write, binary), wx, wb+x, a+x, etc.



Opening and closing files
FILE *fopen (const char *pathname, const char *mode)
arg. 1: file name (absolute or relative to current directory)
arg. 2: string with open mode: r, w, or a; optionally +, b, x

FILE *f1 = fopen("/home/u/t.txt", "r"); // fixed name, avoid
FILE *f2 = fopen(argv[2], "w"); // second arg in command line

char name[128]; // example with user-given name
if (scanf("%127s", name) == 1) {
FILE *f = fopen(name, "ab+"); // open binary, append+read
if (1f) { /* not opened, handle error */ }
}

fopen returns NULL on error (MUST test!)

Otherwise, returned value (a FILE *) used for all other functions
work with stream (logical), not with name (physical)

int fclose(FILE *stream)

Writes any buffered data to disk, closes file

Returns 0 on success, EOF on error. SHOULD also test!
(tell user if save of precious data failed!)



Standard streams. Redirection

stdin: standard input stream (default: from keyboard)
getchar, scanf, etc. read from here

stdout: standard output stream (default: to screen)
putchar, printf, puts write here

stderr: standard error stream (default: to screen)

These streams are automatically open when program runs

Write error messages to stderr, separate from output (results)!

From command line: can redirect standard streams to files,
input: program < in.txt (will read from in.txt)

output: program > out.txt (will write to out.txt)
both: program < in.txt > out.txt

Can also redirect from within program (with freopen)

Remember: can run command from C with system (in stdlib.h)



File input/output

character-based

int fputc(int c, FILE *stream) // write char to file; also putc
int fgetc(FILE *stream) // read char from file; also getc
int ungetc(int c, FILE *stream) // puts ONE char back in stream

line-based (one text line)

int fputs(const char *s, FILE *stream) // writes string as is
int puts(const char *s) // writes string + \n to stdout

char *fgets(char *s, int size, FILE *stream)

// reads line into s, max. size-1 chars incl. \n, adds \O

formatted 1/O (same as printf/scanf, from file in first arg)

int fscanf (FILE *stream, const char *format, ...)
int fprintf(FILE *stream, const char *format, ...)



Working with files

Typical sequence for working with files (name on command line)

#include <errno.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
if (arge !'= 2) {
fprintf (stderr, "correct usage: program filename\n");
return 1; // or some other error code
}
FILE *fp = fopen(argv[1], "r");
if ('fp) { perror("error on open"); return errno; }

// use file: getc, fscanf, fgets, fprintf, etc.

if (fclose(fp)) { perror("error on close"); return errno; }
return O;



Error functions

int feof (FILE *stream) nonzero if at EOF
int ferror(FILE *stream) nonzero if file had errors

Do NOT loop while +feef(E)- :
EQF is NOT detected when at end, only when trying to read past it
= loop while read OK; if not, check feof (f) or ferror (f)

Error codes

global variable int errno declared in errno.h

contains code of last error in a library function

(illegal operation, file not found, not enough memory, etc.)

Function void perror(const char *s) from stdio.h
prints user message s, a colon : and then the error description
(same as given by char *strerror(int errnum) from string.h)



Direct I/O (binary format)

Read/write bytes as-is, without conversion, from/to binary streams
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *strm)
size_t fwrite(void *ptr, size_t size, size_t nmemb, FILE *strm)
read/write to/from address ptr nmemb objects of size bytes each

just like repeated calls to fgetc/fputc

Return value: number of complete objects read/written

If smaller than requested, find reason from feof and ferror
Use fread/fwrite if byte order same in memory and in file
(as specified in docs for file format: .bmp, .jpg, .zip etc.)

big endian, most significant byte first: Oxcafebabe=0xca 0xfe Oxba Oxbe
little endian, least significant byte first: Intel x86 (0xbe Oxba Oxfe Oxca)

Otherwise, read/write number byte by byte, (de)compose in needed order



File positioning

Reading and writing use the same file position indicator
long ftell(FILE *stream) returns position from start of file

int fseek(FILE *stream, long offset, int whence)
Sets file position indicator to offset; 3rd arg is reference point:
start (SEEK_SET), current point (SEEK_CUR), end(SEEK_END)

void rewind(FILE *stream) sets file position indicator to start
same as fseek(stream, OL, SEEK_SET); clearerr(stream);

Use (re)positioning to skip parts of the file on reading,
or to write a selected part

MUST use fseek/fflush when switching between read and write!

Positioning may not be possible in any file (e.g. stdin/stdout)

int fflush(FILE *stream)
writes unwritten data buffers for the given file



Chars, ints and EOF revisited

Files (and standard input) contain bytes (chars)

EOF is NOT a char (the point is to distinguish it from any char!)
chars read by getchar or getc are unsigned, EOF is -1
variable read with getchar/getc must be int so it can fit either

scanf, fgets, fread read arrays of bytes (chars)
need no int, since they report end-of-file differently
EOF can never be in an array read (since it's NOT a char)

Don’t mix signed and unsigned!‘ char may be signed

If reading char as int, compare to int: OxFF, OxDA, etc.
or if declaring unsigned char buf[]

If declared as char, compare with char: ’\xff’, ’>\xda’, etc.



