
Computer Programming

Preprocessor. Modular compilation. Abstract data types

Marius Minea
marius@cs.upt.ro

13 December 2016

mailto:marius@cs.upt.ro

C preprocessor: Macros
Preprocessing is done prior to compilation: cpp or gcc -E

object-like macro
#define NAME replacement
#define LEN 20

function-like macro
#define NAME(arg1,...,argn) replacement
#define MAX(a,b) ((a)>(b)?a:b)
#define NAME(arg1,arg2,...) replacement

can use VA_ARGS to refer to extra arguments

define a symbol witout value: used in conditional compilation
#define NEEDS_MATH_H
#undef SOME_DEFINED_NAME undefine a defined macro

Macros are NOT variables. The are like find-replace in a text,
actual compiler never sees macros, just code after replacement.

CAREFUL with macros: put args in parantheses in macro body
Don’t use with side-effects if arg evaluated twice: MAX(x++,y)

Advanced macros: from tokens to strings

In macro replacements:
arg produces string literal for tokens represented by arg
x ## y produces string concatenation of tokens for x and y

#define STR(s) #s
#define STRSUB(s) STR(s)
#define JOIN(x,y) x ## y
#define SFMT(m) STRSUB(JOIN(%m,s))
#define MAX 32
scanf(SFMT(MAX), s); // scanf("%32s", s);

Conditional compilation

C preprocessor supports conditionals, using constant expressions
only the corresponding branch of the code will be compiled
// convert from byte buffer (least significant first) to int
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
// if both symbols are #define’d and their value is equal
// compile code for big-endian architectures
uint16_t x = b[0] | b[1] << 8; // different order
#else
// code for little-endian architecures
uint16_t x = *(uint16_t)b; // same order
#endif

also: #elif meaning else if ...

#ifdef NAME if NAME is defined #ifndefNAME if NAME is not defined

Header file inclusion and others

header file inclusion
#include <file.h> search in system directories
#include "file.h" search current dir first, then system

conditional compilation: e.g. to avoid multiple inclusion
#ifndef _MYHEADER_H
#define _MYHEADER_H
// contents will not be compiled twice even if included twice
#endif

How to structure complex programs?

Complex programs are written by multiple users, in multiple files.

How to share variables and functions (global identifiers) ?

How to ensure function used consistently (right parameters) ?

How to declare one’s own identifiers without conflict with others?

Properties of identifiers

Scope of identifiers: where is identifier visible ?
block scope: from declaration to end of enclosing }
file scope: if declared outside any block
also: function prototype scope (ID in function header)

function scope (goto labels: can’t jump out)

if redeclared, outer scope hidden while inner scope in effect

Linkage of identifiers: do they refer to the same object ?
external: same in all translation units (files) making up program

default for functions and file scope identifiers;
explicit with extern declaration

internal: same within one translation unit; if declared static
none: each declaration denotes distinct object (for block scope)

Storage duration of objects (variables)

automatic, for variables declared with block scope
lifetime: from block entry to exit; re-initialized every time

static: lifetime is program execution; initialized once

allocated: with malloc

thread: for _Thread_local objects (since C11)

Declarations and definitions

An identifier can be declared multiple times, only defined once

A declaration with initializer is a definition.

A file scope declaration with no initializer and no storage class
specifier or with static is a tentative definition
several tentative definitions for same object must match

become definition by end of translation unit

How to use in practice

functions: define in one file, declare in all others
variables: define in one file, declare extern in all others

Can put declarations in a header file, and include where needed

Typical library structure
mylibrary.h: declarations made visible for use:
typedefs, function declarations (NOT definitions/bodies), macros,
declarations of global variables (like errno), etc.
NO definitions (would duplicate if header included in many .c files)
#ifndef _MYLIBRARY_H
#define _MYLIBRARY_H
// any declarations available to use
#endif

mylibrary.c : code / definitions for declarations from .h
(function/variable definition; struct definition if only pointer in .h)
+ all implementation details that should be hidden from user
#include "mylibrary.h" (declaration/definition consistency)

library compiled to object code: gcc -c mylibrary.c
produces mylibrary.o (with symbols for function names)

main file has #include "mylibrary.h" and uses functions
compile with gcc program.c mylibrary.o

Abstract datatypes

An abstract datatype is a mathematical model for datastructures
defined by the operations applicable to them (functions)
and the constraints among them (axioms)

without exposing details about the implementation.

ADTs separate interface from implementation
the interface provides the abstraction
the implementation is encapsulated (hidden)

ADTs allow changeable and interchangeable implementations
client program relies only on interface, is not affected

Lists as abstract data types

Def: A list is empty, or an element followed by a list.

An ADT list L with elementtype E is usually defined by:
nil : ()→ L empty list constructor

can also be constant rather than function
isempty : L→ Bool is empty ?
cons : E × L→ L constructor: new list from element and rest
head : L→ E first element
tail : L→ L list with all elements after head

and the axioms
head(cons(e, l)) = e and tail(cons(e, l)) = l

Some languages have lists as algebraic data type:
a sum type (alternative) between (1) the value for empty list, and
(2) a product type of an element and a list (constructor cons).

How to declare an ADT with structures

For structure types, encapsulation is enforced if:
header file only contains declaration of pointer type

typedef struct mytype *mytype_t;

C file for implementation contains structure definition
struct mytype {
// declare fields here

};
// functions can access structure fields

Exported functions only work with pointer type mytype_t
⇒ not knowing structure, user program cannot access fields

For example, the FILE datatype enforces such an encapsulation

Example ADT for integer list

#ifndef _INTLIST_H
#define _INTLIST_H

typedef struct ilst *intlist_t;

intlist_t empty(void);
int isempty(intlist_t lst);
int head(intlist_t lst);
intlist_t tail(intlist_t lst);
intlist_t cons(int el, intlist_t tl);

// for freeing memory only: splits first element from tail, returns tail
// if elp non-NULL, store value of head there
intlist_t decons(intlist_t lst, int *elp);

#endif

