
Computer Programming

Implementing an abstract datatype.
Linked lists and queues

Marius Minea
marius@cs.upt.ro

19 December 2016

mailto:marius@cs.upt.ro

Review: compilation basics

Briefly: Compiler translates source code to executable code.

First step: produce object code: gcc -c file.c → file.o
has binary (executable) code for all functions

contains symbols (names) of functions/variables defined in source
and referenced symbols (e.g. library functions) defined elsewhere

Can also produce assembly: gcc -S file.c → file.s
(human-readable version of executable code)

Second step: link object files together (and with standard library)
gcc file1.o file2.o ... → a.out

resolves (links) symbols used in one module and defined in another

More load-time linking done by operating system at program start
(for dynamic libraries)

one memory copy of library can be shared by many programs

Libraries and abstract datatypes

Use of (standard) library so far:
we know a function prototype (declaration), e.g.

FILE *fopen(const char *fname, const char *mode);
declaration is included from header file #include <stdio.h>
we do not know or need the source code for fopen

only the object (binary) code which is part of the library
last compile stage links program with the library

Program is independent of underlying details
(Unix/Windows? file system type?)

implementation of library function can change
(new compiler version, bug fix, new file system)

as long as interface (function prototype) stays the same

Abstract datatypes

An abstract datatype is a mathematical model for datastructures
defined by the operations applicable to them (functions)
and the constraints among them (axioms)

without exposing details about the implementation.

ADTs separate interface from implementation
the interface provides the abstraction
the implementation is encapsulated (hidden)

ADTs allow changeable and interchangeable implementations
client program relies only on interface, is not affected

FILE is an abstract datatype in the standard C library
don’t know implementation detail
can only access with given functions (fopen, fgets, fread, etc.)

Lists as abstract data types

An ADT list L with elementtype E is usually defined by:
nil : ()→ L empty list constructor

can also be constant rather than function
isempty : L→ Bool is empty ?
cons : E × L→ L constructor: new list from element and rest
head : L→ E first element
tail : L→ L list with all elements after head

and the axioms linking these functions
head(cons(e, ?)) = e and tail(cons(?, l)) = l

can be seen as definition of cons
isempty(nil()) = true, isempty(cons(?, ?)) = false
head , tail undefined for list which isempty

Example ADT for integer list

#ifndef _INTLIST_H
#define _INTLIST_H

typedef struct ilst *intlist_t;

intlist_t empty(void);
int isempty(intlist_t lst);
int head(intlist_t lst);
intlist_t tail(intlist_t lst);
intlist_t cons(int el, intlist_t tl);

// for freeing memory only: splits first element from tail, returns tail
// if elp non-NULL, store value of head there
intlist_t decons(intlist_t lst, int *elp);

#endif

Hiding / exposing the representation

If header file declares (exposes) only a pointer type to the data,
implementation is hidden

incomplete structure type: typedef struct ilst *intlist_t
or a void * (but dangerous: no type safety)

Declaration of structure should be hidden in .c file
not exposed in .h file (which is included by all clients)
struct ilst {

intlist_t nxt;
int el;

};

If library client has this structure, can use internal representation
(no longer an ADT)

Implementing the list ADT

#include <stdlib.h> // for NULL and malloc
#include "intlist.h" // ensures .h and .c consistent

struct ilst {
intlist_t nxt;
int el;

};

intlist_t empty(void) { return NULL; }

int isempty(intlist_t lst) { return lst == NULL; }

int head(intlist_t lst) { return lst->el; }

intlist_t tail(intlist_t lst) { return lst->nxt; }

Implementing the list ADT (cont’d)
intlist_t cons(int el, intlist_t tl)
{

intlist_t p = malloc(sizeof(struct ilst));
if (!p) return NULL; // could report some error
p->el = el;
p->nxt = tl;
return p;

}

// returns tail, assigns *elp with head, deletes cell
intlist_t decons(intlist_t lst, int *elp)
{

if (elp) *elp = lst->el;
intlist_t tl = lst->nxt;
free(lst); // just first cell, keeps rest
return tl;

}

Can we do lists of arbitrary types?

C does not have polymorphism or parametric types
⇒ cannot declare, e.g., list of arbitrary type

Could do: typedef int elemtype; (or even a #define)
and have everything else use elemtype

But need to recompile everything when changing elemtype
binary code differs even for assignment/parameter passing
due to varying element size; even more so for addition, etc.

If instead of values we store pointers to values,
we can have just one implementation (list of void *)

must separately allocate memory for elements
program logic must know element type (info not in the list)

Example: list reversal in-place

Assume: we know declaration
struct ilst {

intlist_t nxt;
int el;

};

Two pointers, splitting list:
one to part of list already reversed (initially NULL)
one to rest of list to be reversed (initially full list)

intlist_t rev2(intlist_t rest, intlist_t done) {
if (isempty(rest)) return done;
intlist_t nxt = rest->nxt; // rest to be reversed
rest->nxt = done; // link first cell to done part
return rev2(nxt, rest); // tail-recursive, becomes loop

}
intlist_t rev(intlist_t lst) { return rev2(lst, empty()); }

Remember: pointers are for indirection

A pointer p allows indirect access to a value: *p:
the value of variable p is an address
we can use the value *p found at address p

(either read or write)

Useful for communicating between program parts:
have an address p
other functions that have p can change *p
by reading *p always have latest value

Analogy:
URL (address) vs. web page contents (value, may be updated)

Traversing linked list with address of pointer
When inserting/deleting into a linked list (e.g. ordered list),
must change link in cell prior to the one inserted/deleted

keep address of pointer to be changed (address of link field)
better than with address of previous element (may not exist)

intlist_t hd = cons(3, cons(4, cons(7, NULL))); // in main
void trav_addr(intlist_t lst) {

for (intlist_t *adr = &lst; *adr; adr = &(*adr)->nxt)
printf("adr: %p, *adr: %p\n", adr, *adr);

} // might print:
adr: 0x4dea8, *adr: 0xda050
adr: 0xda058, *adr: 0xda030
adr: 0xda038, *adr: 0xda010

In picture, top row denotes addresses of individual fields

3 0xda030 4 0xda010 7 NULL
0xda050 0x4da058 0xda030 0xda038 0xda010 0xda018

0xda050hd 0xda050lst
0x4dea8

0x4dea8adr

Creating a list using addresses of pointers

intlist_t rdlist(void) { // read ints and place in list
intlist_t hd, *adr = &hd; // address where t<o link next cell
for (int n; scanf("%d", &n) == 1; adr = &(*adr)->nxt)

(*adr = malloc(sizeof(*hd)))->el = n; // malloc and set elem
*adr = NULL; // done, set link to next cell to NULL
return hd; // value from first cycle or NULL above if empty

}

???
0x0cb0

hd0x0cb0adr

3 ????
0x48500x4858

0x4850
0x0cb0

hd0x4858adr

3 0x4870 4 ????
0x4850 0x4858 0x48700x4878

0x4850
0x0cb0

hd0x4878adr

3 0x4870 4 0x4890 7 ????
0x4850 0x4858 0x4870 0x4878 0x48900x4898

0x4850
0x0cb0

hd0x4898adr

3 0x4870 4 0x4890 7 NULL
0x4850 0x4858 0x4870 0x4878 0x48900x4898

0x4850
0x0cb0

hd0x4898adr

Implementing a queue ADT

Queue: first-in, first-out (FIFO): insert/remove at different ends

#ifndef _QUEUE_H
#define _QUEUE_H

typedef struct q *queue_t;

queue_t q_new(void);
int q_isempty(queue_t q);
int q_get(queue_t q);
queue_t q_put(queue_t q, int el);
void q_del(queue_t q);
void q_print(queue_t q);

#endif

Implementing a queue

Use a dummy cell before actual first element; each get deletes it,
next cell becomes dummy. Invariant: empty queue has hd==last.
typedef struct e { // cell for element, with pointer to next

struct e *nxt;
int el;

} elem_t;

struct q {
elem_t *hd; // dummy; actual first cell is next
elem_t *last; // last cell (or dummy if empty)

};

queue_t q_new(void) {
queue_t q = malloc(sizeof(struct q));
q->hd = q->last = malloc(sizeof(elem_t)); // both dummy cell
q->hd->nxt = NULL; // no actual element
return q;

}

