
Computer Programming

Dynamic Memory Allocation

Marius Minea
marius@cs.upt.ro

22 November 2016

mailto:marius@cs.upt.ro

When to use pointers ?

When the language forces us to:
arrays (memory blocks) cannot be passed / returned from functions

only their address (array name is its address)
addresses carry no size information ⇒ must pass size parameter

strings: a string (constant or not) is a char *
need not pass size, since null-terminated

functions: a function name is its address

When we want a level of indirection: changing value at a pointer is
visible to all who have the pointer (like web URL vs. page content)

When a function needs to modify variable passed from outside
pass address of variable

WARNING! Functions use their arguments ⇒ any pointer passed
to a function must be valid (point to allocated memory)

When is allocation the job of the callee (called function)?

If a function needs arrays only for temporary storage,
one can use variable-length arrays (since C99)

array of n elements, n known at runtime: int a[n];

But, if the function has an array result, array must be allocated
and passed from outside
(including length, function has no way of knowing it!)

see examples: add two vectors, multiply two matrices

The more flexible the inputs, the higher the burden on caller
concatenate array of strings – caller must precompute length
multiply two bignums – caller must compute size of product

also, function is less natural (has address of result as argument)

⇒ would like called function to be able to create result object

Dynamic allocation

Dynamic memory allocation (functions from stdlib.h)
allows us to obtain at runtime a memory block of the desired size

void *malloc(size_t size); allocates size bytes
void *calloc(size_t n, size_t size); n*size bytes set to 0
Return value: address of allocated memory or NULL on error
(insufficient memory) ⇒ must test result!

Frequent use: dynamically allocate array of n objects of type T:

T *p = malloc(n * sizeof(T)); // T may be int, char *, etc
if (p) // non-null=success: use p

for (int i = 0; i < n; ++i) // room for n objects
p[i] = ...; // use p like an array

Reallocating and freeing memory

Changing the size of a memory zone allocated with malloc/calloc:
void *realloc(void *ptr, size_t size); requests new size

Can only resize memory allocated dynamically (not static arrays)

size is the complete new size, NOT an extra to add

May move memory contents and return address different from ptr
if (p1 = realloc(p, size)) { p = p1; /* now use p */ }
else { /* reallocation failed, but we still have p */ }

realloc(NULL, len) works like malloc(len)
⇒ loop can init p = NULL, do realloc(p,...) in first cycle

Allocated memory must be freed when no longer needed
void free(void *ptr); frees block allocated with c/malloc
If forgotten, long-running programs (server, browser, etc.)
may consume memory (memory leaks) until exhausted.

When and how to use dynamic allocation
NO when needed memory amount known in advance

YES, when needed memory amount not known at compile-time
(dynamically linked structures: lists, trees; arbitrarily large input)

YES, when we must return an object created in a function
(Can’t return address of local variable, lifetime is function scope)
char *strdup(const char *s) { // creates copy of s

char *d = malloc(strlen(s) + 1); // enough for s and ’\0’
return d ? strcpy(d, s) : NULL; // copy and return dest

}

YES, to copy and keep an object read into a temporary variable

char *tab[10], buf[81];
int i = 0;
while (i < 10 && fgets(buf, 81, stdin))

tab[i++] = strdup(buf); // save address of copy

Example: reading an arbitrarily long line

#include <stdio.h>
#include <stdlib.h>
#define BLOCK 64 // suitable size, not too small
char *getline(void) {

char *tmp, *s = NULL; // initialize for realloc
unsigned cnt = 0, size = 0; // keep room for \0
for (int c; (c = getchar()) != EOF;) {

if (cnt >= size) // allocated block full
if (!(tmp = realloc(s, (size+=BLOCK)+1))) { // +1 for \0

ungetc(c, stdin); break; // if no more room
} else s = tmp; // use new address

s[cnt++] = c; // add last char
if (c == ’\n’) break; // end on newline

} // end with \0, reallocate only size needed
if (s) { s[cnt++] = ’\0’; s = realloc(s, cnt); }
return s;

}

Read long line piecewise – better than many getchar()

#include <stdio.h>
#include <stdlib.h>
#define INCR 64
char *getline(void)
{

char *line = NULL, *tmp;
unsigned len, sz = 0; // allocated so far
do { // if no more mem, return piece read

if (!(tmp = realloc(line, sz + INCR))) return line;
line = tmp; // realloc OK
if (!fgets(line + sz, INCR, stdin)) // no more ?

if (sz) break; else { free(line); return NULL; }
sz += (len = strlen(line + sz)); // add length read

} while (line[sz-1] != ’\n’ && len == INCR-1); // not EOL
return realloc(line, sz + 1); // shrink to size

}

How to allocate a matrix
void *pm = malloc(LIN * COL * sizeof(elemtype));

but what is the right type of the pointer for use as matrix?
A matrix is an array of lines. A line is an array of COL elements.
By writing typedef double line[5]; (line is now a type name)
we see that the type of a pointer to a line is double (*)[5]

So for a pointer to a matrix (i.e., to its first line), we should write:
double (*pm)[5] = malloc(3 * 5 * sizeof(double));
We could also write line *pm = ...
How to declare a function that returns such a type?
double (*allocmat(unsigned lin, unsigned col))[] {

double (*pm)[col] = malloc(lin * col * sizeof(double));
for (int i = 0; i < lin; ++i)

for (int j = 0; j < col; ++j) pm[i][j] = i*col + j;
return pm;

}

Syntax says we can use allocmat(3, 5)[2][3] just like pointer pm
declared double (*pm)[5]; thus we get double (*allocmat(...))[]

How to allocate a matrix (cont’d)

We can’t put [col] in the function header, since col is only visible
inside the parameter list (...) and function body {...}

The (incomplete) type returned by the function: double (*)[]
is compatible with the (more precise) type of pm: double (*)[col].
So the return statement is well typed. In main we could write:
int main(void) {

double (*m)[5] = allocmat(3, 5);
printf("%g\n", m[2][4]);
return 0;

}

Or we could write: typedef double (*matpointer)[];
matpointer allocmat(unsigned lin, unsigned col) {/*same code*/}
If the number of columns is fixed, we can use it in [] with either
the typedef or the original function declaration:
double (*allocmat(unsigned lin))[5] { /*fixed columns */}

