
Computer Programming

Recursion. Decision.

Marius Minea
marius@cs.upt.ro

2 October 2017

mailto:marius@cs.upt.ro

Review: ways to write a function
Computes a value
double discrim(double a, double b, double c)
{

return b*b - 4*a*c;
}

Produces an effect (e.g. prints a message)
void myerr(int code) // void type: returns nothing
{

printf("error code %d\n", code);
}

Has effect + value (computes + writes: several statements)
int sqrprint(int x)
{

printf("Computing the square of %d\n", x);
return x * x;

}

Review: structure of a simple program

#include <stdio.h> // if we need to read/write
#include <math.h> // if we use math functions

// function definition: third side of a triangle
double thirdside(unsigned a, unsigned b, double phi)
{

// the expression contains 2 function calls: cos, sqrt
return sqrt(a*a + b*b - 2*a*b*cos(phi));

} // define before main, call in main

int main(void)
{

// function call with values for its arguments
printf("third side: %f\n", thirdside(3, 5, atan(1)));
return 0;

}

Program structure: separating concerns

passing an argument is NOT reading from input
computing a value is NOT writing it

A function will typically NOT ask for input.
The smallest functions will receive arguments and return results

This allows them to be composed and used anywhere.

A function will typically NOT print its result, just return it.
(printing is inflexible: may want different format, language, etc.)

We might write “wrapper” functions that ask for input, then call
the computation function.

We might also write display functions that get a value and print it.

Functions with and without result

(Computational) problems are solved by writing functions.
data: usually given as arguments: f(3, 7), NOT read from input

Functions with result
produced with the statement return expression ;
must appear at end of any path (if branch) through function

else the function won’t return a result!
warning: control reaches end of non-void function

CAUTION! in statement f(5); returned value is not used
use it: return f(5); , as parameter printf("%d", f(5)) , etc.

Functions that don’t return a value: return type void
void print_int(int n) { printf("integer %d\n", n); }

returns on reaching closing brace OR return; (NO expression)
use: standalone in an expression statement: print_int(7);

Recursion
any solvable complex problem can be solved using recursion

⇒ recursion is fundamental in computer science

Computing arithmetic expressions

Take some expression using integer arithmetic:
(2 + 3) ∗ (4 + 2 ∗ 3)− 5 ∗ 6/(7− 2) + (4 + 3− 2)/(7− 3)

Can we compute it?

YES, once we realize the expression is the sum of two expressions

(2 + 3) ∗ (4 + 2 ∗ 3)− 5 ∗ 6/(7− 2)
+ (4 + 3− 2)/(7− 3)

We then compute the simpler expressions decomposing similarly:

(2 + 3) ∗ (4 + 2 ∗ 3) – 5 ∗ 6/(7− 2) = 44
(4 + 3− 2) / (7− 3) = 1
44 + 1 = 45

Problem-solving steps

What was essential to compute the expression ?

I Recognizing the recursive structure
expression is sum of two simpler expressions

I Expressing the simplest computation steps
we can add, divide, etc. two numbers

I Deciding when to stop
if expression is a number, need to do nothing

Recursion: definition, examples

From mathematics, we know recurrence relations for sequences:

arithmetic sequence:
{

x0 = b (i.e.: xn = b for n = 0)
xn = xn−1 + r for n > 0

Example: 1, 4, 7, 10, 13, . . . (b = 1, r = 3)

geometric sequence:
{

x0 = b (i.e.: xn = b for n = 0)
xn = xn−1 · r for n > 0

Example: 3, 6, 12, 24, 48, . . . (b = 3, r = 2)

xn is not computed directly, but step by step, using xn−1.

A notion is recursive if it is used in its own definition.

Exercise: write recurrences for: Ck
n , Fibonacci sequence, . . .

Recursion: definition, examples
Recursion is fundamental in computer science:
it reduces a problem to a simpler case of the same problem

objects: a sequence is{
a single element © sequence
an element followed by a sequence ©

︷ ︸︸ ︷
©©©

e.g. word (sequence of letters); number (sequence of digits)

actions: a path is{
a step −→ path
a path followed by a step ︷ ︸︸ ︷−→−→−→ −→

e.g. traversing a path in a graph

An expression:
number (7)
identifier (x)
expression + expression
expression - expression
(expression), etc

Example: power function
xn =

{
1 n = 0
x · xn−1 otherwise (n > 0)

#include <stdio.h>
double pwr(double x, unsigned n)
{
return n==0 ? 1 : x * pwr(x, n-1);

}
int main(void)
{

printf("-2 raised to 3 = %f\n", pwr(-2.0, 3));
return 0;

}

unsigned: type of nonnegative integers (natural numbers)
The header of pwr is a declaration of the function
so it can be used in its own function body (recursive call)
Even if we write pwr(-2, 3), -2 (int) will be converted to float
(the type declared for each parameter is known)

The mechanism of a recursive call

Same code executed many times with different values.

The pwr function does two computations:
– a test (n == 0 ? base case ?) if so, return 1
– else, a multiply; the right operand requires a new recursive call

pwr(5, 3)
call↓ ↑125

5 * pwr(5, 2)
call↓ ↑25

5 * pwr(5, 1)
call↓ ↑5

5 * pwr(5, 0)
call↓ ↑1

1

The mechanism of a recursive call

In the recursive computation of the power function:

Every call makes a new call, until the base case it reached

Every call executes the same code, but with other data
(own values for parameters)

When reaching the base case, all started calls are still unfinished
(each has to perform the multiplication with the result of the call)

Returning is done in opposite order of the calls
(call with exponent 0 returns, then the one with exponent 1, etc.)

Recursion: power by repeated squaring

Recursion = reduction to a simpler case of the same problem
Base case is simple enough for direct computation

(can / need no longer be reduced)

xn =


1 n = 0
(x2)n/2 n > 0 even
x · (x2)n/2 n > 0 odd

double pow2(double x, unsigned n)
{

return n == 0 ? 1
: n % 2 == 0 ? pow2(x*x, n/2) : x * pow2(x*x, n/2);

}

Recursion: power by repeated squaring (v. 2)

What happens for n = 1 ?
needless computation of (x2)0 (which is 1) ⇒ rewrite:

xn =


1 n = 0
x n = 1
(x2)n/2 n > 1 even
x · (x2)n/2 n > 1 odd

double pow2(double x, unsigned n)
{

return n < 2 ? n == 0 ? 1 : x
: n % 2 == 0 ? pow2(x*x, n/2) : x * pow2(x*x, n/2);

}

Let’s follow the recursive calls

#include <stdio.h>

double pow2(double x, unsigned n)
{

printf("base %f exponent %u\n", x, n);
return n < 2 ? n == 0 ? 1 : x

: n % 2 == 0 ? pow2(x*x, n/2) : x * pow2(x*x, n/2);
}
int main(void)
{

printf("5 to the 6th = %f\n", pow2(5, 6));
return 0;

}

Each call halves the exponent ⇒ dlog2(n + 1)e calls
pow2(5, 6)→ pow2(25, 3)→ pow2(625, 1)

How to use recursion

Recursion solves a problem by reducing it to a simpler case
of the same problem.

To use recursion, we must express the problem as a function
things given/known to the function are parameters

(index of recursive sequence; problem size; etc.)
the answer to the problem is the function result

Sometimes, the problem asks to produce an effect (print)
rather than compute a result.

Block statements and sequencing

A function body may have several statements in sequence
{

printf("This is a line\n");
printf("Line 2: ");
printf("cos(0)=%f\n", cos(0));
return 0;

}

{
statement
...
statement

}

Function returns on reaching closing brace OR return statement.

More generally, a block (compound statement) can appear in place
of any statement.

This is an example of recursion in the definition of statements:
statement ::= return expressionoptional ;

expressionoptional ; (incl. function call)
{ statement ... statement }

The if statement

Conditional operator ? : selects from two expressions to evaluate
Conditional statement selects between two statements to execute
Syntax: if (expression)

statement1
else

statement2

or if (expression)
statement1

Effect: If the expression is true (nonzero) statement1 is executed,
else statement2 is executed (or nothing, if the latter is missing)

Each branch has only one statement. If several statements are
needed, these must be grouped in a compound statement { }

An else belongs to the closest if:
if1 (exp1) if2 (exp2) stmt then else2 stmt else

The parantheses () around the condition are mandatory.

Example with the if statement
Printing roots of a quadratic equation:

void printsol(double a, double b, double c)
{

double delta = b * b - 4 *a * c;
if (delta >= 0) {

printf("root 1: %f\n", (-b-sqrt(delta))/2/a);
printf("root 2: %f\n", (-b+sqrt(delta))/2/a);

} else printf("no solution\n"); // puts("no solution");
}

Can rewrite the conditional operator ? : using the if statement

int abs(int x)
{

return x > 0 ? x : -x;
}

int abs(int x)
{

if (x > 0) return x;
else return -x;

}

Recursion: Fibonacci words

Fibonacci sequence: F0 = 0,F1 = 1,Fn = Fn−1 + Fn−2 for n > 1
inefficient to do direct recursion (exercise: how many calls?)

Can define Fibonacci words (strings):
S0 = 0, S1 = 01, Sn = Sn−1Sn−2

(formed by string concatenation)

Write a function that prints Sn
problem = function; effect = print; concatenation = sequencing

More recursion: fractals

Fractals are self-similar figures
(a part of the figure looks like the whole figure = recursion!)

Box fractal:

What is the base case?
What defines a part of the figure?

http://mathworld.wolfram.com/BoxFractal.html

http://mathworld.wolfram.com/BoxFractal.html

Elements of a recursive definition

1. Base case: no recursive call
= simplest case, defined directly

e.g. in sequences: initial term x0 of the recurrence
the empty list (for a list of elements)

A missing base case is an ERROR ⇒ recursion never stops!

2. Recurrence relation
defines a notion using a simpler case of the same notion

3. Proof (argument) that recursion stops in finite number of steps
(e.g. a nonnegative measure that decreases on each application

for sequences: the index (smaller in definition body but ≥ 0)
for recursive objects: size (component objects are smaller)

Are the following definition recursive and correct ?

? xn+1 = 2 · xn
? xn = xn+1 − 3
? an = a · a · . . . · a (n times)
? a sentence is a sequence of words
? a sequence is the concatenation of two smaller sequences
? a string is a character followed by a string

A recursive definition must be well formed (conditions 1-3)
something cannot be defined only in terms of itself
one can only use other notions which are already defined
computation has to stop at some point

Recursion in numbers: sequences of digits

A natural number (in base 10) can be defined/viewed recursively:
a number is a single digit
or: last digit preceded by another number (in base 10)

We can find the two parts using integer division (with remainder)
n = 10 · (n/10) + n%10 1457 = 10 · 145 + 7
the last digit of n is n%10 1457%10 = 7
the number remaining in front is n/10 1457/10 = 145

Exercises with a simple recursive solution:
sum of a number’s digits
number of digits; largest/smallest digit, etc.

Solution: always follow the structure of the recursive definition
base case: directly give result for single-digit number
recurrence: combine last digit with result for remaining number

(n/10)

How many digits in a number?
1, if number < 10
else, one digit more than the number without its last digit (n/10)
unsigned ndigits(unsigned n)
{

return n < 10 ? 1 : 1 + ndigits(n / 10);
}

Alternative: use an accumulator for the digits already counted
start from 1 (last digit already counted; surely has one)
if the number is single-digit, return the digits already counted
else, n/10 still has (at least) one digit, add 1 to parameter

unsigned ndigs2(unsigned n, unsigned r)
{

return n < 10 ? r : ndigs2(n / 10, r + 1);
}

Need function with only one parameter: wrap auxiliary function
(called with starting value 1: single-digit number)
unsigned ndig(unsigned n) { return ndigs2(n, 1); }

Largest digit in a number

base case: single-digit number (digit is also max)
else, max of last digit and result for the remaining number
unsigned max(unsigned a, unsigned b) { return a > b ? a : b; }
unsigned maxdigit(unsigned n)
{

return n < 10 ? n : max(n%10, maxdigit(n/10));
}

Variant with accumulator: maximal digit seen so far: md
if 0 (no more digits), return the maximum so far: md
else, continue with maximum of last digit and previous max

unsigned maxdig2(unsigned n, unsigned md)
{

return n == 0 ? md : maxdig2(n/10, max(md, n%10));
}
unsigned maxdig(unsigned n) { return maxdig2(n/10, n%10); }

Two ways of writing recursion

unsigned max(unsigned a, unsigned b) { return a > b ? a : b; }

unsigned maxdig(unsigned n) {
return n < 10 ? n : max(n%10, maxdig(n/10));

} // directly from: number ::= digit | number digit

unsigned maxdig2(unsigned n, unsigned maxd) {
unsigned md1 = max(n%10, maxd);
return n < 10 ? md1 : maxdig2(n/10, md1);

} // keep maxd found so far

unsigned maxdig1(unsigned n) {
return n < 10 ? n : maxdig2(n/10, n%10);

} // 1-arg wrapper for function above

Is recursion efficient?

S0 = 1, Sn = Sn−1 + cos n S1000000 = ?

#include <stdio.h>
#include <math.h>

double s(unsigned n) {
return n == 0 ? 1 : s(n-1) + cos(n);

}

int main(void) {
printf("%f\n", s(1000000));
return 0;

}

./a.out
Segmentation fault

Recursion and the stack

Code executes sequentially (except for branch/call/return)

On function call, must remember where to return after call
Must store function parameters and locals to keep using them

These are placed on the stack
Each function activation has its stack frame:
arguments, return address, local vars
Nested calls return in opposite order made
⇒ stack frames popped in reverse order
of saving (last in, first out)

For deep recursion, stack may be insufficient
⇒ program crash

locals of f(0)
retaddr: to f(1)
args to f: n=0
locals of f(1)
retaddr: to f(2)
args to f: n=1
locals of f(2)
retaddr: to main
args to f: n=2
locals: main

Tail recursion

S0 = 1, Sn = Sn−1 + cos n
We know we’ll have to add cos n (but not yet to what)
⇒ can anticipate and accumulate values we need to add
When reaching the base case, add accumulator (partial result)

double s2(double acc, unsigned n)
{

return n == 0 ? acc : s2(acc + cos(n), n-1);
}

double s1(unsigned n) { return s2(1, n); } // call w/ S0=1

Program now works!

Tail recursion is iteration!

A function is tail-recursive if recursive call is last in the function.
no computation done after call (e.g., with result)

result (if any) is returned unchanged between calls

⇒ parameter and local values no longer needed
⇒ no need for stack: replace recursive call with jump,
return value at end (base case)

(Optimizing) compiler converts tail recursion to iteration (loop)
need not worry about efficiency

Recursion can express arbitrary repetition

Base case: are we done? return (result)

Recursive case (not done):
compute new partial result
call recursive function with new partial result

(usually an extra parameter, besides initial input)

Exercise: rewrite Fibonacci
extra parameters: last, previous number
stopping condition: all iterations done

Recursion: reverse digits in number

Often, problem restated with explicit partial result (accumulator)

n r
1465 empty(0)

146 5
14 56

1 564
empty(0) 5641

What is the result of reverting
given that
the end has already been reverted
the resulting number is r
and remaining part is n?

unsigned rev2(unsigned n, unsigned r) {
return n == 0 ? r : rev2(n/10, 10*r + n % 10);

}
// initial reversed part is zero
unsigned rev(unsigned n) { return rev2(n, 0); }

Careful: return in base case must use accumulator
(else computation is thrown away!)

Recursion for computing approximations: square root

Babylonian method: a0 = 1, an+1 = 1
2(an + x

an
)

recurrent sequence of approximations ⇒ recursive solution
given (parameters): x and the current approximation
result = a satisfactory approximation (precision ε)

Re-state problem: compute
√

x given current approximation an
In recursion, partial result is usually carried as parameter

Computation:
if precision good |an+1−an|<ε return current approximation an

(base case)
else, return value computed starting from new approximation an+1

(recursive call)
We no longer need an index n, and the base case is not n = 0
(but it’s still the case when nothing left to compute)

Can prove: error to
√

x is less than distance between last two terms

Square root by approximation
#include <math.h>
// needed for double fabs(double x); (abs. value for reals)

// root of x with error < 1e-6 given approximation a_n
double root2(double x, double an)
{

return fabs(a_n - x/a_n) < 2e-6 ? a_n
: root2(x, (a_n + x/a_n)/2);

}
double root(double x) { return x < 0 ? -1 : root2(x, 1); }

Two functions:
auxiliary root2 needs two parameters (also approximation)
for user: root defined as required: only one parameter

returns -1 for negative numbers (error code)

Recall: this form is tail recursion: recursive call is last computation.
Compiler can convert this to iteration (efficient).

Review: conditional expression
condition ? expr1 : expr2 everything is an expression
expr1 or expr2 may be conditional expression themselves
(if we need more questions to find out the answer)

f (x) =


−6 x < −3

2 · x x ∈ [−3, 3]
6 x > 3

double f(double x)
{

return x < -3 ? -6 // else, we know x >= -3
: x <= 3 ? 2*x : 6;

}

or: x >= -3 ? (x <= 3 ? 2*x : 6) : -6
if x ≥ −3 we still need to ask x ≤ 3 ?

or: x < -3 ? -6 : (x > 3 ? 6 : 2*x)
if x is not < −3 or > 3, it must be x ∈ [−3, 3]

Conditional expression (cont’d)

The conditional expression is an expression
⇒ may be used anywhere an expression is needed

Example: as an expression of type string
puts: function that prints a string to stdout, followed by a newline

void printsgn(int n)
{

puts(n == 0 ? "zero"
: n > 0 ? "positive"
: "negative");

}

Note layout for readability: one question per line.

Expressions and statements

Expression: computes a result
arithmetic operations: x + 1
function call: fact(5)

Statement: executes an action
return n + 1;

Any expression followed by ; becomes a statement
n + 3; (computes, but does not use the result)
printf("hello!"); we do not use the result of printf

but are interested in the side effect, printing
printf returns an int: number of chars written (rarely used)

Statements contain expressions. Expressions don’t contain statements.

Sequencing for statements and expressions
Statements are written and executed in order (sequentially)
With decision, recursion and sequencing we can write any program

Compound statement: several statements between braces { }
A function body is a compound statement (block).

{
statement
...
statement

}

{
double pi = acos(-1);
printf("pi = %f\n", pi);
double diff = sqrt(.5) - sin(pi/4);
printf("difference: %f\n", diff);

}
A compound statement is considered a single statement.
May contain declarations: anywhere (C99/C11)/at start (C89).
All other statements are terminated by a semicolon ;

The sequencing operator is the comma: expr1 , expr2
evaluate expr1, ignore; evaluate expr2 ⇒ value of whole expression

Decisions with multiple branches

The branches of an if can be any statements
⇒ also if statements
⇒ can chain decisions one after another

void binop(int op, int a, int b) // op: operator (char)
{

if (op == ’+’) printf("sum: %d\n", a + b);
else if (op == ’-’) printf("diff: %d\n", a - b);
else puts("bad operator");

}

Checks op==’+’ and op==’-’ are not independent. DON’T write
if (op == ’+’) printf("sum: %d\n", a + b);
if (op == ’-’) printf("diff: %d\n", a - b);
It is pointless do the second test if the first was true

(op cannot be both + and - at the same time)
The proper code is with chained ifs (or a switch statement)

Decisions with multiple branches
If each branch ends with returning a value, the else is not needed:
we only get to a branch if the previous condition was false
(else the function will have returned):
int binop(int op, int a, int b) // op: operator (char)
{

if (op == ’+’) return a + b;
if (op == ’-’) return a - b; // can’t be here for op == ’+’
puts("bad operator"); return 0; // any other case

}

Often, we first deal with error cases, then do the actual processing:
int check_interval(int n) {

if (n > 100) { puts("number too big"); return -1; }
if (n < 0) { puts("number is negative"); return -1; }
// do something with n here
return 0; // means OK

}

