
Computer programming

Iteration. Side effects

Marius Minea
marius@cs.upt.ro

17 October 2017

mailto:marius@cs.upt.ro

Assignment operators

We’ve used the simple assignment: lvalue = expression
lvalue = what can be on the left of an assignment

so far: variable; see later: array element; pointer dereference

Compound assignment operators: += -= *= /= %=
x += expr is a shorthand for x = x + expr etc.

later: also for bitwise assignment operators >> << & ^ |
use them: shorter and makes intent of transformation clearer

Increment/decrement operators prefix/postfix: ++ --
++i increments i, expression value is value after assignment
i++ increments i, expression value is value before assignment
both have same side effect (assignment) but different value
int x=2, y, z; y = x++; /* y=2,x=3 */; z = ++x; // x=4,z=4

⇒ same effect as statements, not same value in expressions

Side effects and sequence points
In a complex expression, when do side effects actually take place?
Most operators have unspecified evaluation order of operands (e.g.,
arithmetic) ⇒ only partial order of computations is imposed. But:
All side effects must complete before crossing a sequence point.

Examples of sequence points (standard, Annex C)
– for function calls, between evaluating the function designator
(function expression) + arguments, and the actual call
– for , && || between evaluating first and second operand
– in ? : between evaluating the first operand and the second/third
If a side effect on a scalar object is unsequenced relative to either a
different side effect on the same scalar object or a value computation
using the value of the same scalar object, the behavior is undefined. If
there are multiple allowable orderings of the subexpressions of an
expression, the behavior is undefined if such an unsequenced side effect
occurs in any of the orderings. C standard, 6.5 Expressions
Thus, i = i++ or a[i] = i++ are undefined!

Caution with multiple side effects!

Even when order of side effects is well defined, use with caution!

DON’T write: return i++;
assignment to i is useless, since the function returns
obscures intent: should it be return i; or return i+1; ?

DON’T: c = toupper(c); return c; DO: return toupper(c);

DON’T read multiple characters in an expression:
if (getchar() == ’*’ && ((c = getchar()) == ’/’)

if first comparison fails, second char is not read
(c has previous / uninitialized value)
⇒ hard to reason about program behavior

The for statement

for (init-clause ; test-expr ; update-expr)
statement

is equivalent∗ with:
* except: continue statement, see later

init-clause;
while (test-expr) {

statement
update-expr ;

}

Any of the 3 parts in (...) may be missing, but semicolons stay
If test-expr is absent, it is considered true (infinite loop)

Before C99: init part could only be an expression, e.g. i = 0
Since C99: init-clause can also be a declaration, e.g. int i = 0

scope of declared identifiers is loop body only

⇒ USE loop scope for counters, if they are not needed later
(scope of identifiers should only be as much as needed)

WARNING! The semicolon ; is the empty statement
DO NOT use after closing) of for unless you want empty body!

Counting with for loops
#include <stdio.h>
int main(void)
{

unsigned n = 5;
while (n--) // from n-1 to 0: n-- != 0, postdecrement

printf("loop 1: n = %d\n", n);
n = 5; // reinitialize after countdown to 0
for (int i = 0; i < n; ++i) // from 0 to n-1

printf("loop 2: counter %d\n", i);
for (int i = 1; i <= n; ++i) // from 1 to n

printf("loop 3: counter %d\n", i);
for (int i = n; i > 0; --i) // from n to 1

printf("loop 4: counter %d\n", i);
for (int i = n; i--;) // from n-1 to 0, postdecr.

printf("loop 5: counter %d\n", i);
return 0;

}

Counting with for loops

If direction does not matter, this is shortest:
for (int i = n; i--;)

also easier to compare to zero

Warning: test expression is computed every time
⇒ avoid needless computation, e.g.
for (int i = 0; i < strlen(s); ++i)
(compiler may optimize some, but not always)

If needed, precompute upper bound:
for (int i = 0, len = strlen(s); i < len; ++i)

The break statement
Exits the immediately enclosing loop or switch statement
Used if we don’t want to continue the remaining processing
Usually: if (condition) break;

#include <ctype.h>
#include <stdio.h>
int main(void) // count words in input
{ // word: sequence of non-whitespace chars

unsigned nrw = 0;
for (int c;; ++nrw) { // exit w/ break; count each iter

while (isspace(c = getchar())); // consume whitespace
if (c == EOF) break; // done
while (!isspace(c = getchar()) && c != EOF); // word

} // word counted in loop update part
printf("%u\n", nrw);
return 0;

}

Example: rewrite, starting every word with uppercase
word = sequence of non-whitespace chars (common term usage)
\t \n \v \f \r and space, as checked by isspace()

#include <ctype.h>
#include <stdio.h>
int main(void) {

for (int c; (c = getchar()) != EOF;)
if (isspace(c)) putchar(c);
else { // first non-space

putchar(toupper(c)); // print uppercase if letter
while ((c = getchar()) != EOF) { // still word?

putchar(c); // print even if space
if (isspace(c)) break; // exit inner loop

}
}

return 0;
}

The continue statement

jumps to the end of the loop body in a while, do or for loop
i.e., to update expression in for and to test in do or while

void printfact(unsigned n) { // print prime factors of n
for (unsigned d = 2; d*d <= n; d += 1 + d % 2) {

if (n % d != 0) continue; // not divisible; next d
unsigned exp = 1;
while ((n /= d) % d == 0) ++exp;
printf ("%u", d); // write current factor
if (exp > 1) printf("^%u", exp); // write exponent
if (n > 1) putchar(’*’); else return;

}
printf("%u", n); // 0, 1 or remaining prime

}

Use continue sparingly (much less common than break)
can make code clearer, if decision to skip is early, and loop is long
otherwise, a simple if may be easier to read and understand.

The goto statement
Syntax: goto statementlabel ;
Jumps to statement with given label, only inside same function.
Any statement can be prefixed with a label followed by :
Discouraged (unstructured code); ok to jump out of several loops.
#include <ctype.h>
#include <stdio.h>
int main(void) // count chars, words, lines
{

unsigned nc = 0, nw = 0, nl = 0;
for (int c; (c = getchar()) != EOF; ++nc) {

if (!isspace(c)) // word start
for (++nc, ++nw; !isspace(c = getchar()); ++nc)

if (c == EOF) goto outloop; // exit both loops
if (c == ’\n’) ++nl; // c isspace here; ++nc in for

}
outloop: printf("%u lines, %u words, %u chars\n", nl, nw, nc);
return 0;

}

The switch statement: example
Used for multiple branches depending on an integer value
can be clearer/more efficient than a multiple if ... else

#include <stdio.h>
int main(void)
{

int a = 3, b = 4, c, r;
switch (c = getchar()) {

case ’+’: r = a + b; break; // end switch
case ’-’: r = a - b; break;
case ’x’: c = ’*’; // no effect on flow, continue
case ’*’: r = a * b; break;
case ’/’: r = a / b; break;
default: fputs("Unknown operator\n", stderr);

return 1; // main finished with error
}
printf("Result: %d %c %d = %d\n", a, c, b, r);
return 0;

}

The switch statement

Syntax: switch (integer-expression) statement
statement is a block with multiple statements, some labeled:

case value: statement

The integer expression is evaluated.
If the statement has a case label with that value, jump to it
Otherwise, if there is a default, label, jump to it
Else, do nothing (goes on to next statement after switch)
A statement may have several labels (flow jumps to same code)

case val1: case val2: statement

WARNING! Normal statement sequencing applies:
control flow does not stop at the next case label (it’s just a label)
⇒ DON’T forget: to exit switch statement, use break;

switch vs. if ... else

A multiple if ... else statement will do multiple tests
(until one succeeds)

A switch statement may be implemented using a jump table:
the expression is evaluated and used as index in a table of addresses

⇒ can be more efficient if range of possible values is limited
(also: compiler may limit range of values to 1023, cf. standard)

More importantly: a switch may be easier to read

But: be careful not to forget break where needed!

Writing and testing loops

Think about:
what variables change in each iteration ?
what is the loop continuation/stopping condition ?

Don’t forget update of variable that controls loop!
(otherwise will loop forever)

On loop exit, the loop condition is false.
use this to reason about what happens next

Inspect/check/test the program:
mentally, running it “pencil and paper” on simple cases
then with more complex tests, including corner cases

Example: Parsing expressions

Expression syntax: rigorously defined by a grammar
frequent notation: Backus-Naur form (BNF)

Writing code: one function for each defined notion (nonterminal)

Prefix expressions (no parantheses/precedence needed)
expr ::= number | operator expr expr

Postfix expressions
expr ::= number | expr expr operator
Left recursive, can’t decide branch (start is always number)

⇒ rewrite grammar:

expr ::= number restexpr
restexpr ::= ε | expr operator restexpr

ε is usual notation for empty string

Parsing usual (infix) expressions

Simplest attempt: ambiguous, no associativity or precedence
expr ::= number | expr operator expr | (expr)

⇒ separate additive/multiplicative expressions/operators

expr ::= term | expr + term | expr - term
term ::= factor | term * factor | term / factor
factor ::= number | (expr)

expr and term still left-recursive ⇒ rewrite:

expr ::= term restexpr
restexpr ::= ε | + term restexpr | - term restexpr
term ::= factor restterm
restterm ::= ε | * factor restterm | / factor restterm
factor ::= number | (expr)

Writing code from recursive definitions
One function for each nonterminal
Function structure determined by computation (data flow)
expr ::= term restexpr
restexpr needs previous term ⇒ gets it as parameter
int expr(void) { return restexpr(term()); }

restexpr ::= ε | + term restexpr | - term restexpr
restexpr is right-recursive write as tail-recursive function
int restexpr(int t1) {

int c = getchar();
if (c == ’+’) return restexpr(t1 + term()); else ...

}

or rewrite as loop within expr(), accumulate expression value
int expr(void) {

int c, e = term();
for (;;) { // use break; to stop

if ((c = getchar()) == ’+’) e += term; else ...
} // try to write the complete program!

