Computer Programming
Internal representation. Bitwise operators

Marius Minea

marius@cs.upt.ro

23 October 2017

mailto:marius@cs.upt.ro

Ideal math and C are not the same!

In mathematics:
integers Z and reals R have unbounded values (are infinite)
reals are dense (have infinite precision)

In C:
numbers take up finite memory space (a few bytes)
= have finite range; reals have finite precision

To correctly work with numbers, we must understand:
representation and storage in memory
size limitations = overflow errors
precision limitations = rounding errors

Memory representation of objects

Any value (parameter, variable, also constant) needs to be
represented in memory and takes up some program space

bit = unit of data storage that may hold two values, 0 or 1
need not be individually addressable (can't refer to just one bit)

byte = addressable unit of data storage that may hold a character
formed of bits: ~ CHAR_BIT > 8 bits (limits.h)
8 bits in all usual architectures

the sizeof operator: gives size of a type or value in bytes not Bifg
sizeof (type) or sizeof expression

sizeof (char) is 1. a character takes up one byte

for unicode and wide character support: uchar.h, wctype.h
an int has sizeof (int) bytes = CHAR_BIT*sizeof (int) bits
All ints, big (10000) and small (5) use sizeof (int) bytes!

sizeof is NOT a function; evaluated (if possible) at compile-time

Binary representation of ints: two's complement

In memory, numbers are represented in binary (base 2)

unsigned integers: for N bits, value is computed as
CN—-1CN—2 ... C1C0 (2) = CN—-1 "~ oN-1 +...+c- 21 + Co - 20
cn—1 = most significant (higher-order) bit (MSB)
co = least significant (lower-order) bit (LSB)
Range of values: from 0 to 2V — 1 e.g. 11111111 is 255
LSB ¢g = 0 = even number; ¢cg = 1 = odd number

signed integers: MSB is sign; N-1 bits value: several encodings
i) sign-magnitude: if MSB is 1, take value part as negative
i) one’s complement: sign bit counts as —(2V=1 — 1)

i) two's complement (used in practice): sign bit counts as —
= Range for two's complement is from —2N=1 to 2N-1 1
ley_o... 10 (2) = —oN-1 +cn_o- oN-2 +...4+¢c- 20 (< 0)

2N—1

unsigned: 0..255 = signed: 0..127 + 128..255 become —128.. — 1
8-bit: 11111111 is -1 11111110 is -2 10000000 is -128

Integer types: choose the right size

Before the type int one can write specifiers for:

size: short, long, since C99 also long long

sign: signed (implicit, if not present), unsigned
Can be combined; may omit int: e.g. unsigned short

char: signed char [-128, 127] or unsigned char [0, 255]
int, short: > 2 bytes, must cover [-215 (-32768), 21° — 1]
long: > 4 bytes, must cover [—231 (-2147483648) , 23! — 1]
long long: > 8 bytes, must cover [-203 203 _ 1]

Corresponding signed and unsigned types have the same size:
sizeof (short) <sizeof (int) <sizeof (long) <sizeof (long long)

limits.h defines names (macros) for limits, e.g.
INT_MIN, INT_MAX, UINT_MAX, likewise for CHAR, SHRT, LONG, LLONG

since C99: stdint.h: fixed-width integers in two's complement
int8_t, int16_t, int32_t, int64_t,
uint8_t, uintl6_t, uint32_t, uint64_t

Use sizeof to write portable programs!

Sizes of types are implementation dependent
(processor, OS, compiler ...)
= use sizeof to find storage taken up by a type/variable

DON’T write programs assuming a given type has 2, 4, 8, ... bytes
program will run incorrectly on other systems

#include <limits.h>
#include <stdio.h>

int main(void) {
// z: printf format modifier for sizeof (unsigned: %u)
printf ("Integers have %zu bytes\n", sizeof(int));
printf("Smallest (negative) int: %d\n", INT_MIN);
printf ("Largest (positive) unsigned: %u\n", UINT_MAX);
return O;

Integer and char constants: base 8, 10, 16

base 10: as usual, e.g., -5

base 8: prefixed by 0 (zero): 0177 (127 decimal)

base 16: prefixed by Ox or 0X: e.g., Ox1aE (430 decimal)
Can't write in any other base. Can't write binary 3101110,

suffixes: u or U for unsigned, e.g., 65535u

1 or L for long e.g., 0177777L, 11 or LL for long long

Character constants printable: w/ single quotes: ’0’, >!?, ’a’

special characters: ’\0’ nul ’\a’ alarm

’\b’ backspace ’\t’> tab ’\n’ newline

’\v’ vert. tab ’\f’> form feed ’\r’ carriage return
’\"? double quote ’\’? quote ’\\’ backslash

octal (max. 3 digits): '\14' Caution type char may be signed
hexadecimal (prefix x): "\xff" OxFF: int 255, "\xff’ may be -1

The char type is an integer type (of smaller size)
Char constants are automatically converted to int in expressions.
(this is why you don't see functions with char parameters)

What use are bitwise operators ?

access the internal representation of data (e.g., numbers)

efficiently encode information (e.g. header fields in network
packets or files; status values/commands from/to hardware)

efficient data structures: sets of small integers
one bit per element (1 = is member; 0 = is not member of set)
one 32-bit int for any set of ints 0..31 (4 billion combinations)

intersection bitwise AND
Set operations: union bitwise OR
add element set corresponding bit

date/time can be represented using bits:

min/sec (0-59): 6 bits hour (0-23): 5 bits day (1-31): 5 bits
month (1-12): 4 bits year: 6 bits left from 32: 1970-2033

= need operations to get day/month/year from 32-bit value

Bitwise operators

Can only be used for integer operands! Not fleat!

All operators work with all bits independently (not just one bit!)

&
I

<<

>>

bitwise AND (1 only if both bits are 1)
bitwise OR (1 if at least one of the bits is 1)
bitwise XOR (1 if exactly one of the bits is 1)

bitwise complement (opposite value: 0 > 1)

left shift with number of bits in second operand
vacated bits are filled with zeros; leftmost bits are lost

right shift with number of bits in second operand

vacated bits filled with zero if number is unsigned or nonnegative
else implementation-dependent (usually repeats sign bit)

= for portable code, only right-shift unsigned numbers

Examples

01101010 01101010 01101010
& 10101101 | 10101001 © 10101101
00101000 11101011 11000111

~ 01101010 111010u >> 2 11101010 << 2
10010101 00111010u 10101000

only right-shift unsigned numbers!

Bit operators don't change operands, they just give a result

If xis 7, x+2is 9, but x is still 7. Only x = x+2 changes x !

Bitwise operators are no different!
x & OxF or x >> 2 will compute some results, x will be the same!

Printing a number in octal (base 8)

void printoct(unsigned n)

{
if (n > 8) printoct(n/8);
putchar(’0’ + n % 8);

}

8 = 23 = Each octal digit corresponds to a group of 3 bits.

e.g. one hundred is 0...001100100 (8% +4-8 4 4)
= can use bit operators to isolate parts

void printoctbits(unsigned n)
{
unsigned nl = n >> 3; // ‘‘shift out’’ last digit
if (nl1) printoct(nl); // not all bits are zero
putchar(’0’ + (n & 7)); // & 7 (111) gives last 3 bits
}

Likewise, can use groups of 4 bits to obtain hex digits
careful to get either 0°..°9” or ?A’ .. °F’ for printing

Working with individual bits

Bitwise operators work with all bits.

But, if choosing the appropriate operation and operand (“mask”)
we can check / set / reset / flip a single bit

1 << k: bitkis1, rest 0

& with 1 gives same bit, & with 0 is always 0
n & (1 << k) tests bit k of n (is nonzero?)
n & “(1 << k) resets (makes 0) bit k in the result

| with O gives same bit, | with 1 is always 1
n | (1 << k) sets (to 1) bit k in the result

~ with 0 preserves value, ~ with 1 flips value
n ~ (1 << k) flips bit k in result

Printing individual bits

Use a mask (integer value) with only one bit 1 in desired position
1) shift mask, keep number in place

void printbitsi(unsigned n) { // “(70u>>1) = 1000...0000
for (unsigned m = “("0u>>1); m; m >>= 1)
putchar(n & m 7 1’ : °0’);
}

2) constant mask, shift number

void printbits2(unsigned n) {
for (int m = 1; m; m <<= 1, n <<= 1) // m counts bit width
putchar(n & “("0u>>1) 7 ’1° : ’0°);
}

3) same, but directly check sign bit

void printbits3(unsigned n) {
for (int m = 1; m; m <<= 1, n <<= 1)
putchar((int)n < 0 7 ’1° : ’0°);

Properties of bitwise operators

1 << k: bitkis1, rest0 = is 2K for k < 8*sizeof (int)
n << k has value n- 2k (if no overflow)

n >> k has value n/2* (integer division) for unsigned/nonnegative
= use this, not pow (which is floating-point!)

(1 << k) only bit k is 0, rest are 1

0 has all bits 0, ~0 has all bits 1 (= -1, since it's a signed int)
~ preserves signedness, so ~Ou is unsigned (UINT_MAX)

’ Bit ops produce results (like +, *, etc), without changing operands‘

’Only assignment operators (and pointer dereference) change values! ‘

Creating and working with bit patterns (masks)

& with 1 preserves & with 0 resets

| with O preserves | with 1 sets

Value given by bits 0-3 of n: ~ AND with 0...011115y n & OxF
Reset bits 2, 3, 4: AND with ~0...011100(2) n &= ~0x1C
Set bits 1-4: OR with 11110(;y n [|= 0x1E =n |= 036
Flip bits 0-2 of n: ~ XOR with 0...0111(5y n "= 7

= choose fitting operator and mask (easier written in hex/octal)

Integer with all bits 1: ~0 (signed) or ~Ou (unsigned)

k rightmost bits 0, rest 1: ~0 << k

k rightmost bits 1, rest 0: ~ (70 << k)

“("0 << k) < p has k bits of 1, starting at bit p, rest 0

(n > p) & “(70 << k): n shifted p bits, reset all except last k
n & (7(70 << k) << p): reset all except k bits starting at bit p

More about identifiers: linkage and static

We have discussed scope (visibility) and lifetime (storage duration)
Linkage: how do same names in different scopes/files link ?

Identifiers declared with static keyword have internal linkage
(are not linked to objects with same name in other files)
Storage duration if declared static is lifetime of program.

static in function: local scope but preserves value between calls
initialization done only once, at start of lifetime

#include <stdio.h>

int counter(void) {
static int cnt = O;
return cnt++;

}

int main(void) {
printf ("counter is %d\n", counter()); // 0
printf("counter is %d\n", counter()); // 1
return O;

3

Working with real numbers

Floating-point constants: with decimal point, optional sign and
exponent (prefix e or E); integer or fractional part may be missing:
2. .6 1.e-6 .BE+6 suffix f, F: float; 1, L: long double

Implicit type of floating constants: double.
float function arguments are promoted to double
e.g. in calls to printf, where "%f" means double

Real types have limited range and precision!

Sample limits from float.h:

float: 4 bytes, |ca. 10738 to 1038, 6 significant digits
FLT_MIN 1.17549435e-38F FLT_MAX 3.40282347e+38F

double: 8 bytes, |ca. 10739 to 10398, 15 significant digits
DBL_MIN 2.2250738585072014e-308 DBL_MAX 1.7976931348623157e+308

long double: for higher range and precision (12 bytes)

Representing real numbers

Similar to scientific/normalized notation in base 10:
6.022 - 1023, 1.6 - 1071%: leading digit (# 0), decimals, exp. of 10

In computer: base 2; sign, exponent and mantissa (significand)
(—1)%8" % 2% x 1.mantissa) 1 < 1.mantissa < 2

IEEE 754 floating point format (used by most implementations)
Bit pattern: S EEEEEEEE MMMMMMMMMMMMMMMMMMMMMMM

float: 4 bytes: 148423 bits; double: 8 bytes: 14+11+52 bits
exponent represented in excess of a bias (float: 127, double: 1023)

number is | (—1)° - 2E7127 . 1. M5 for 0 < E < 255

Caution! the 1 before mantissa is implicit (not in bit pattern)

E=0: small numbers, :|:2_126~0.M(2) E=255: +INFINITY, NAN

Working with bit representation of float

9.75 =93 |log,9.75] =3 = 9.75 =2%- 15 5 =.00111y
float is _0_ 10000010 0011100...0

~N ———

sign 12743 23-bit mantissa

Extracting the mantissa M as unsigned (low-order 23 bits)
and adding the implicit 1 on bit 23: M1 =1 << 23 | M
then the number is (—1)° - 26127 . M1 . 2=23

i.e., the mantissa part is (222 + M) - 2728 =14+ M.2723

Floating point has limited precision!

Precision of real numbers is relative to their absolute value
(floating point rather than fixed point)

e.g. smallest float > 1 is 1 + 2723 (last bit of mantissa is 1)

For larger numbers, absolute imprecision grows

e.g., 224 41 = 22% % (1 +272%), last 1 bit does not fit in mantissa
= float can represent 22* and 224 + 2, but 2?4 + 1 is rounded up

FLT_EPSILON 1.19209290e-07F // min. with 1+eps > 1
DBL_EPSILON 2.2204460492503131e-16 // min. with 1+eps > 1

E = 0: 0 and small (denormal) numbers: (—1)° 27126 « 0.M2)
E = 255: £INFINITY, NAN (not-a-number, error)

Use double for sufficient precision in computations!
math.h functions: double; variants with suffix; sin, sinf, sinl

C standard also specifies rounding directions, exceptions/traps, etc.

Watch out for overflows and imprecision!

int (even long) may have small range (32 bits: + 2 billion)
Not enough for computations with large integers (factorial, etc.)
Use double (bigger range) or arbitrary precision libraries (bignum)

Floating point has limited precision: beyond 1E16, double does
not distinguish two consecutive integers!

A decimal value may not be precisely represented in base 2:
may be periodic fraction: 1.2(39) = 1.(0011))

printf ("%f", 32.1f); writes 32.099998

Due to precision loss in computation, result may be inexact

= replace test x==y with fabs(x - y) < small epsilon
(depending on the problem)

Differences smaller than precision limit cannot be represented:
= for x < DBL_EPSILON (ca. 107%®) we have 1 + x ==

Usual arithmetic conversions (implicit)

In general, the rules go from larger to smaller types:

if an operand is long double, convert the other to long double
if any operand is double, the other is converted to double

if any operand is float, the other is converted to float
perform integer promotions: convert short, char, bool to int
if both operands have signed type or both have unsigned type
convert smaller type to larger type

6. if unsigned type is larger, convert signed operand to it

7. if signed type can fit all values of unsigned type, convert to it
8. otherwise, convert to unsigned type corresponding to operand
with signed type

ARSI

(negative) int becomes unsigned in operation with unsigned

unsigned u = b;
if (-3 > u) puts("what?!"); // -3u == UINT_MAX - 2

compile with -Wconversion and -Wsign-compare or -Wextra

Explicit and implicit conversions

Implicit conversions (summary of previous rules)
integer to floating point, smaller type to larger type
integer promotions: short, char, bool to int
when equal size, convert to unsigned

Conversions in assignment: truncated if lvalue not large enough
char c; int i; ¢ = i; //loses higher-order bits of i
Il Right-hand side evaluated independently of left-hand side!!!
unsigned eur_rol = 43000, usd_rol = 31000 //currency
double eur_usd = eur_rol / usd_rol; //result is 1 !!!
(integer division happens before assignment to double)

Floating point is truncated towards zero when assigned to int
(fractional part disappears)

Explicit conversion (type cast): (typename) expression
converts expression as if assigned to a value of the given type
eur_usd = (double)eur_rol / usd_rol //int to double

Watch out for sign and overflows!

WARNING char may be signed or unsigned

(implementation dependent, check CHAR_MIN: 0 or SCHAR_MIN)
= different int conversion if bit 7 is 1 (’\xff’ = -1)
getchar/putchar work with unsigned char converted to int

WARNING: most any arithmetic operation can cause overflow

printf ("%d\n", 1222000333 + 1222000333); //-1850966630

(if 32-bit, result has higher-order bit 1, and is considered negative)
printf ("/u\n", 2154000111u + 2154000111u); //overflow: 4032926
CAREFUL when comparing / converting signed and unsigned

if (-5 > 4333222111u) printf("-5 > 4333222111 !!!\n");
because -5 converted to unsigned has higher value

Correct comparison between int i and unsigned u:

if @ <0 |l i<u or if (i > 0&& i >= u)
(compares i and u only if i is nonnegative)

Check for overflow on integer sum int z = x + y:

if (x>0&& y>0&& z<0 ||l x<0&& y <0 & z > 0)

ERRORS with bitwise operators

DON'T right-shift a negative int!
May loop forever if n negative; the topmost bit inserted is usually
the sign bit (implementation-defined). Use unsigned (inserts a 0).

DON'T shift with more than bit width (behavior undefined)

AND with a one-bit mask is not 0 or 1, but 0 or nonzero
n & (1 << k) iseitherOor1 << k

