Overview

-

Abstract Interpretation
s What is it, intuitively?
s Relationship to dataflow analysis

Value ranges

Fixpoints and infinite lattices
s Dataflow problems with infinite lattices
s Widening
s Narrowing
Two approaches to generating correct analyses

» Representation functions
o Correctness relations

o |

.~ p.1/25

Abstract Interpretation: Intuitively

o N

“Execute” the program on an abstract program state
s Just like writing an interpreter, but...

» Abstract program state represents all possible
program states at a particular program point

» Covers all possible program inputs

What to do for multiple incoming control-flow edges?
Join!

What to do for program loops? Iterate!

.= p.2/25

Relationship to Dataflow Analysis

o N

#® Abstract interpretation is a dataflow analysis
s A different way to construct correct analyses
» Induces a specific ordering on the “worklist”

#® Abstract program states are typically complete lattices

s Trivial join lattice for any domain V' with values
v, v2,- -+, Uy € V IMplies an abstract interpretation.

s Wil permit lattices with infinite height
s Can combine multiple analyses into a single lattice

L # Trivial example: constant propagation J

.—p.3/25

°

Generating Analyses

-

Start with the values in domain V' you are interested in.
Example: The integers
Zo=4--,-3,-2,—-1,0,1,2,3,--- }.

Next, consider the operations that can be performed on
valuesinV, e.qg., +, —, , /. For vy, v9 € V we say that
v1 ~ v9 If the value v; can be transformed to vs.

Determine the form of the elements In the lattice L.

Construct the operations performed on the elements of
the lattice L. For 1,1l € V we say that [; > 5 If the
lattice element [; can be transformed to [s.

.~ p.4/25

Back to Reality: Constant Propagation
B -

What does the ~ for constant propagation involve?

Back to Reality: Constant Propagation
B -

What does the ~ for constant propagation involve?

Negation, addition, subtraction, multiplication, etc., of
Integers.

Back to Reality: Constant Propagation

f # What does the ~ for constant propagation involve? T

Negation, addition, subtraction, multiplication, etc., of
Integers.

® \What then does > involve?

.—p.5/25

Back to Reality: Constant Propagation
f # What does the ~ for constant propagation involve? T

Negation, addition, subtraction, multiplication, etc., of
Integers.

® \What then does > involve?

Negation, addition, subtraction, multiplication, etc., of
elements in the lattice.

.—p.5/25

Back to Reality: Constant Propagation
f # What does the ~ for constant propagation involve? T

Negation, addition, subtraction, multiplication, etc., of
Integers.

® \What then does > involve?

Negation, addition, subtraction, multiplication, etc., of
elements in the lattice.

For negation, the following hold:

—(T)>T — (L) > L — (¢) > —c

.—p.5/25

Back to Reality: Constant Propagation
f # What does the ~ for constant propagation involve? T

Negation, addition, subtraction, multiplication, etc., of
Integers.

® \What then does > involve?

Negation, addition, subtraction, multiplication, etc., of
elements in the lattice.

For negation, the following hold:
—(T)>T — (L) > L — (¢) > —c

Binary operations will have, e.qg., I1 x Iy > 3.

.—p.5/25

Back to Reality: Constant Propagation
f # What does the ~ for constant propagation involve? T

Negation, addition, subtraction, multiplication, etc., of
Integers.

® \What then does > involve?

Negation, addition, subtraction, multiplication, etc., of
elements in the lattice.

For negation, the following hold:
—(T)>T — (L) > L — (¢) > —c

Binary operations will have, e.qg., I1 x Iy > 3.
s What would + look like?

o |

.—p.5/25

°

Constant propagation is boring: we can do better.

Value Ranges

-

Definition: A value range, denoted |« : b|, represents all
values z such that:

a€ZU{—} beZU{oco} a<x<b

Examples:

>
»
»

»

IS t

constant propagation?

17 : 17] represents the value 17.
17 : 42| represents any value between 17 and 42.
—oo : —1] represents any negative integer.

0 : oo] represents any non-negative integer.

NiS representation more or less expressive than in

|

.—p.6/25

Value Range Lattice

-

® To define a lattice, we need:

Value Range Lattice

-

#® To define a lattice, we need:
s A partial ordering relation LC.

-

Value Range Lattice

To define a lattice, we need:
s A partial ordering relation LC.
s A join operator L.

.—Pp.7/25

-

Value Range Lattice

To define a lattice, we need:
s A partial ordering relation LC.
s A join operator L.
s A meet operator .

.—Pp.7/25

Value Range Lattice

-

To define a lattice, we need:
s A partial ordering relation LC.
s A join operator L.
s A meet operator .

® Definition: [a1 ; bl] L [CLQ ; bz] when a; > ag A by < bs.

.—p.7I25

Value Range Lattice

-

To define a lattice, we need:
s A partial ordering relation LC.
s A join operator L.
s A meet operator .

o Definition: [a1 ; bl] L [CLQ ; bz] when a1 > as A by < bs.
® T =|—00:00]. Why?

.—p.7I25

-

Value Range Lattice

To define a lattice, we need:
s A partial ordering relation LC.
s A join operator L.
s A meet operator .

o Definition: [al ; bl] L [CLQ ; bz] when a1 > as A by < bs.
® T =|—00:00]. Why?
#® What does 1. mean? Denote it by | = [co : —q].

.—p.7I25

Value Range Lattice
-

To define a lattice, we need:
s A partial ordering relation LC.
s A join operator L.
s A meet operator .

Definition: [CLl) bl] L [CLQ) bz] when a1 > ag N\ by < bo.
T =|—00: 00]. Why?
What does | mean? Denote it by 1 = [oo: —o0].

© o o o

Definition: |aq : b1] U a2 : bo| = [min(ay, as) : max(by, b2)]

o |

.—p.7I25

© o o o o

Value Range Lattice

To define a lattice, we need:

s A partial ordering relation LC.
s A join operator L.

s A meet operator .

Definition: [CLl) bl] L [CLQ) bz] when a1 > ag N\ by < bo.
T =|—00: 00]. Why?
What does | mean? Denote it by 1 = [oo: —o0].

Definition: |a; : b1] U |as : b2| = |min(ay, as) : max(by, ba)]

Definition: [a1 : bl] [[ag : bg] — [max(al, CLQ) : min(bl, bo

)

|

|

.—p.7I25

© © o o o o

Value Range Lattice

To define a lattice, we need:

s A partial ordering relation LC.
s A join operator L.

s A meet operator .

Definition: |a; : b1] C |ag : bo] When a; > as A by < ba.

T =|—00: 00]. Why?

What does | mean? Denote it by 1 = [oo: —o0].
Definition: |a; : b1] U |as : b2| = |min(ay, as) : max(by, ba)]
Definition: [a; : b1] M |ag : bo] = [max(ay,asz) : min(by, ba)]
How wide is this lattice”? How high?

|

.—p.7I25

Value Range Lattice: Graphically
- -

fooed
o] fiod
S o AN
foo:) [2:2 0:0d
e yd N AN
foor-] [2:1] H:2 [L:od
[2:0 1] 0:2
e N yd N / AN
2:] H:0 D:1 [1:2
e ~ / AN e N e AN

e 1.1 0:0 1.1 b
e

(Marvel at it. It took me forever to get right.)

.—p.8/25

© o o o

°

Value Range Operations

Negation: —[a : b] > [—b: —al.
Addition: [a1 ; bl] + [CLQ ; bz] > [CL1 + a9 : by + bz]
Subtraction: [a1 : bl] — [CLQ : bg] > [Cbl — by 1 b1 — CLQ]

Multiplication: [a : by] - |ag : ba] >
‘min(ajag, a1ba, biag, bibe) : max(ajaz, aibs, biag, b1b2))
Key points to revisit later:

s We know how to map from elements (integers) in V
to elements (value ranges) in L.

» We can prove that the operations on elements of V/
are “abstracted” by the operations on elements on L.
Important relationship between ~ and .

But now, let’s try some abstract interpretation... J

.~ p.9/25

-

Abstract Interpretation Example

1.y=2

'

2.if (...)

2"

3. x=17

4. x=5

NS

5. Z=X+y

'

6. if (z <

6)

/

7.7=0

Ny

8. exit

o Example: Try it with constant propagation
lattice.

» Not much of an improvement.

Example: Try it with value range lattice.
o Start at entry node.

-

.—p.10/25

-

Abstract Interpretation Example

1.y=2

'

2.if (...)

2"

3. x=17

4. x=5

NS

5. Z=X+y

'

6. if (z <

6)

/

7.7=0

Ny

8. exit

o Example: Try it with constant propagation
lattice.

» Not much of an improvement.

Example: Try it with value range lattice.
o Start at entry node.
s Apply L at control-flow joins

-

.—p.10/25

-

Abstract Interpretation Example

1.y=2

'

2.if (...)

2"

3. x=17

4. x=5

NS

5. Z=X+y

'

6. if (z <

6)

/

7.7=0

Ny

8. exit

o Example: Try it with constant propagation
lattice.

» Not much of an improvement.

Example: Try it with value range lattice.
o Start at entry node.
s Apply L at control-flow joins
s Apply > for each operation.

-

.—p.10/25

Abstract Interpretation Example

o N

1.y=2
N i:(___) o Example: Try it with constant propagation
AR lattice.
2 et | | 4 xes s Not much of an improvement.
N/ o Example: Try it with value range lattice.
5. Z=x+y o Start at entry node.
' s Apply L at control-flow joins
o.1f(z<0) s Apply > for each operation.
4 s Note: Introducing < into > improves
! Zzg analysis.
y

L 8. exit J

.—p.10/25

Abstract Interpretation Example

o N

1.y=2
N i:(___) o Example: Try it with constant propagation
AR lattice.
2 et | | 4 xes s Not much of an improvement.
N/ o Example: Try it with value range lattice.
5. Z=x+y o Start at entry node.
' s Apply L at control-flow joins
o.1f(z<0) s Apply > for each operation.
4 s Note: Introducing < into > improves
! Zzg analysis.
y

L 8. exit J

.—p.10/25

Analyzing Loops

1.x
y

0;
0;

'

2.if (x < 10)

3y=y+2

N

1/

4. x =

X+ 1

5. if (x > 5)

/
6.y =X;
\

y

7. exit

® \What do we do at node 27? Join
with L (as in dataflow analysis).

Analyzing Loops

1.x
y

0;
0;

'

2.if (x < 10)

3y=y+2

N

1/

4. x =

X+ 1

5. if (x > 5)

6.y =X;

J

y

7. exit

® \What do we do at node 27? Join
with L (as in dataflow analysis).

What do we do at the back edge
from 2 to 4? Iterate around this
loop until it stabilizes.

|

.—p.11/25

Analyzing Loops

1.x=0;
y=0;

'

2.if (x < 10)

s
.y=y+2
N

4.Xx=x+1;

5. if (x > 5)

/
6.y =X;
\

y

7. exit

® \What do we do at node 27? Join
with L (as in dataflow analysis).

What do we do at the back edge
from 2 to 4? Iterate around this
loop until it stabilizes.

#® Does it every stabilize?

|

.—p.11/25

Analyzing Loops

1.x
y

0;
0;

'

2.if (x < 10)

3y=y+2

N

1/

4. x =

X+ 1

5. if (x > 5)

6.y =X;

i
Ny

7. exit

°

What do we do at node 2?7 Join
with L (as in dataflow analysis).

What do we do at the back edge
from 2 to 4? Iterate around this
loop until it stabilizes.

Does it every stabilize?

Need to introduce widening: jumps
values closer to T on back edges.

|

.—p.11/25

Analyzing Loops

1.x
y

0;
0;

'

2.if (x < 10)

3y=y+2

N

1/

4. x =

X+ 1

5. if (x > 5)

6.y =X;

i
Ny

7. exit

°

What do we do at node 2?7 Join
with L (as in dataflow analysis).

What do we do at the back edge
from 2 to 4? Iterate around this
loop until it stabilizes.

Does it every stabilize?

Need to introduce widening: jumps
values closer to T on back edges.

|

.—p.11/25

Widening
.

Widening reduces the number of iterations around a
loop to a finite quantity, even in an infinite lattice.

Formally, v : L x L — L is a widening operator iff:

s It is an upper bound operator, such that
Vii,lo €V [1 C (11Vl2) 1 5.

s For all ascending chains of lattice elements [, s, - - -,
the ascending chain (1 Vi, VI3V - - - stablilizes.

Widening operator for value ranges:
[al : bl]V[(ILQ : bg] = [LB(al,ag) : UB(bl,bQ)]

a If a1 < a9 by 1f by > by
LB = . UB(b1,b2) = .
(a1, a2) {—oo otherwise (b1, b2) {oo otherwise

o |

.—p.12/25

Widening: Graphically

widening

fixed point

Applying Widening Operators
- -

1.x=0;
y=0;
. (:<10) o Appl_y [1VIy on back edges. [; Is the
= previous value (at the head of the
S v—ven edge) and /5 is the new value (at
'y_y\’ the tail of the edge).
Ax=x+1 # Now we get a fixed point even with
our infinite lattice.
5. if (x> 5) #® Let’s look at x:
/ 1. [0:0]v([0:0]U1:1])=]0: o0].
6'y:\:(; 2. [0:00]V([0:0]U[1: 00]) =10: o
y

L 7. exit J

.—p.14/25

Deriving Information from Conditions

o N

Conditionif (z < 10) tells us something about the
value of z in the t hen and el se branches.

® If true, we know that x € |[—oco : 9]. If false, x € |10 : oo].

This information is in addition to what we already knew.

s Meet operation [y ' I, computes the lattice element
when both [; and [, describe the value.

o What if the meetis 17?

o Example: We know that = € [0 : oo| (magically).
s Onthen branch, z € (|0:o00]M|[—0c0:9]) =10:9|.
s Ontheel se branch, z € (|0: co| |10 : oo] = [10 : oo].

o |

.—p.15/25

Narrowing

o N

Apply narrowing after widening to recover some
iInformation lost due to widening.

® A :Lx L — Lisanarrowing operator if:
e Vii,lo e L [Hh (llﬁlg) C [, and

s For all descending chains of lattice elements
l1,ls,- -+, the descending chain [AlbAl3A - - -
stabilizes.

Narrowing operator for value ranges:

[a1 . bl]A[aQ . bg] = [2’1 . ZQ]
where z; = If a3 = —oo then ay else aq,

29 = If b1 = o0 then bo else by

o |

.—p.16/25

Narrowing: Graphically

widening

-

Widening/Narrowing Example

1.x
y

0;
0;

'

2.if (x < 10)

3y=y+2

N

1/

4. x =

X+ 1

5. if (x > 5)

6.y =X;

J

y

7. exit

o K =1{0,1,2,510}

Let’s look at x again:
1. [0:0]v([0:0]u[l:1])=10:]
2. [0:00]V([0:0]L[1:10]) =10: oc].

Stable.

3. [0:00]Al0:10] = |0: 10]. (Interpret
the loop)

4. [0:10]A(]0: 0] [1:10]) =10: 10].
Stable.

-

#® Now, z € [0 : 9] on t hen branch, x €

110 : 10] on el se branch!

.—p.18/25

A Better Widening Operator

. N

#® Let K be the set of integer constants in the program.
o Define v as:

[a1 : bl]V[CLQ : bg] — [LB(CLl,CLQ) : UB(bl,bQ)]

al ifa1§a2
LB(CLl,CLQ) =<k Ifas < a1 ANk :max{k S K’k < az}
—o0 Ifag <ai AVEE K :a9 < k

by If by > by

UB(bl,bQ) =< k If b1 < bz/\k’:min{k - K’bz <]{}
—o0 Ifby<by AVk€E K : k< by

Precision/efficiency tradeoff: more steps, but better

L results. J

.—p.19/25

Generating Correct Analyses

o N

Have shown how we can create an analysis by
abstraction:

» Abstract the value domain V' with the lattice L
s Abstract all operations (collectively called ~~) with .

How do we prove that our analysis is correct?
s Representation functions
s Correctness relations

Both methods are equivalent.

o |

.—p.20/25

Representation Functions

-

Let 5: V — L be a function that maps any value in V' to
Its “best” representation in L.

Your analysis is correct if the following is true:
ﬁ(vl) Cl{Avi ~>vo ANl D> lo = 6(?}2) C s

Intuitively: If a value can be safely described by a lattice
element, then any value it is transformed into can be
safely described by the corresponding transformation
on the lattice element.

Can we prove this for value ranges?

|

.—p.21/25

Correctness relations

-

Givenv e V,l € L,v R Is true when v Is described by .
1R|—1:2] =7, TR|17 : 42] =7

General requirement: preservation of correctness

Let R:V x L — {true,false} be a correctness relation.

vi RIGNvi ~ v ANl >y = vy Rl

Two more conditions for correctness when dealing with
lattices:

1. Lattice preserves R: v Rl1ANl1 Elo = v Ry
2. There iIs always a “best” approximation [for every v:

Wlel CL:vRI) =vR(]L)
Interesting consequence: v Ry Av Ry = vR(l1 M la) J

.—p.22/25

Combining Analyses
- -

We mainly talk about a lattice L for values of a single
variable.

Can take the Cartesian product of several of these
lattices to handle multiple variables:
L' =11 x Ly x...x Ly.

Variables do not need to be of the same type: L; could
be a value range lattice, L, a boolean lattice, and L3 a
points-to graph lattice.

o |

.—p.23/25

Abstract Interpretation Tidbits

o N

® You can read about Galois connections to abstract
Interpretation in the class text, but it will hurt.

#» We've only discussed forward semantics: you can do
abstract interpretation backwards, and with meet
lattices (everything is dual).

We only handled the “trivial’ case of widening on back
edges.

s What to do about irreducible control-flow graphs?

s So long as you pick widening edges such that every
cycle contains at least one widening edge, abstract
Interpretation “works”.

o Bourdoncle studied these chaotic iteration

strategies. NP-complete problem, but with good
L heuristics. J

.—p.24/25

Uses of Value Range Propagation

-

Constant propagation, dead-code elimination, etc: can
propagate constants and determine when conditions
evaluate true or false.

Array bounds analysis: detect bugs or remove checks
that are known to be unnecessary.

Bit width estimation: limit the sizes of registers when
performing hardware synthesis.

Static branch prediction: produce probabilities that
particular branches will be taken.

|

.—p.25/25

	Overview
	Abstract Interpretation: Intuitively
	Relationship to Dataflow Analysis
	Generating Analyses
	Back to Reality: Constant Propagation
	Value Ranges
	Value Range Lattice
	Value Range Lattice: Graphically
	Value Range Operations
	Abstract Interpretation Example
	Analyzing Loops
	Widening
	Widening: Graphically
	Applying Widening Operators
	Deriving Information from Conditions
	Narrowing
	Narrowing: Graphically
	Widening/Narrowing Example
	A Better Widening Operator
	Generating Correct Analyses
	Representation Functions
	Correctness relations
	Combining Analyses
	Abstract Interpretation Tidbits
	Uses of Value Range Propagation

