Model Checking Basics
October 13, 2005

e Finite state systems
e Temporal logics: CTL*, CTL, LTL
e Explicit-state model checking

Formal verification 2 Marius Minea

Model Checking Basics, 4

Modeling with Kripke structures

Kripke structure = labeled finite-state automaton
M = (8,50, R, L)
— S: finite state set
— Sp C S: set of initial states
— RC S x S: total transition relation Vs € S3s' € S . (s,s') € R
(from every state there is at least one transition)
— L: S — 24P: state labeling function

AP =set of atomic propositions (observations that appear in formu-
las/properties/specifications). Examples:

— a state is stable or not

— define the proposition bad ::= red_recvd > 1 (Spin project)

Path (trajectory): infinte set of states starting from sq:
™= 505152 ..., With R(s;,s;41) for all i >0

Formal verification 2 Marius Minea

Model Checking Basics 2

What kind of systems can we verify 7

— systems whose behavior can be described mathematically

— we analyze: the interaction of the system with its environment

— system state = all quantities that determine its future behavior in
time

— the definition of state depends on the abstraction level in

Example for a processor: instruction set level; internal organization
(incl. pipeline, etc.); register transfer level; gate-level; transistor level

System classification:

— discrete, continuous or hybrid systems

— finite (necessarily discrete) or infinite (continuous systems, recursive
programs, programs with dynamic data structures)

Formal verification 2 Marius Minea

Model Checking Basics 5

Modeling: circuits and programs

e sequential circuits: a variable for each state element (register) and
for primary inputs
instantaneous combinational propagation assumed

e asynchronous circuits: one variable for each signal
(in more complex/accurate models: explicit physical time)

e programs: declared variables + program counter
(for procedures, need to keep track of local variables on stack during
time of procedure activation; potentially infinite-state)

Formal verification 2 Marius Minea

Model Checkina B35\ 1 5 deling of finite-state systems

— Finite state machines (automata): states + transitions
— Programs (finite): variables + program counter
There is no conceptual difference !

Let V = {v1,vp,---,vs} be a set of variables.

A state: an assignment s:V — D of values from a given domain D
for each variable v € V.

— A state (assignment) < a formula true only for that assignment:
(v — T, vp «— 4,03 — 2) (v1 =7)A(vp =4) A (v3=2)
— A formula < the set of all assignments that make it true

eg. v1 <5Avp >3

= sets of states can be represented by logic formulas

— A transition s — s': a formula over V.UV’

V' = copy of V (next state formulas)

ex. (semaphore = red) A (semaphore’ = green)

— set of all transitions: transition relation = a formula R(V, V")

Formal verification 2 Marius Minea

Model Checking Basics 6
Synchrony and asynchrony

Types of composition
(deriving system behavior from behavior of components)

e synchronous: conjunction (simultaneous transitions)
R(V,V') = Ry(V1,V{) A Ro(V,V3) V=VuW

e asynchronous: disjunction (individual transitions)
R(V, V') = R1(V1, V{) A Eq(V \ V1) V Ro(Va, V) A Eq(V \ V2)
where Eq(U) = Ayey(v =)

— arbitrary interleaving between component transitions

— a transition changes just the variables of one component
— simultaneous transitions considered impossible

Programs are usually modeled asynchronously (there is no physical
synchronization between instructions of concurrent programs)

Formal verification 2 Marius Minea

Model Checking Basics 7

Modeling behavior

Reactive systems

— interact with the environment (reaction to a given stimulus)
— often have infinite execution

= a computation = infinite set of states

= it is not enough to represent input-output behavior

— Examples:
a given (error) state is not reached
the system does not deadlock

More generally: properties described in temporal logic

— modal logic (truth with temporal modalities)

— used starting in anntiquity for reasoning about time

— formalized and applied by Pnueli (1977) to concurrent programs

Formal verification 2 Marius Minea

Model Checking Basics 10

Semantics of LTL

Denote M, s = f: in the model M, state s satisfies f
7t = suffix of the path 7 = sgsysp... starting at s;

M,sk=p < pe L(s)

M,sE=Af < Vpathw froms, M,7n = f

M,m=p < M,s|=p, for pe AP and s the first state of =
M, = ~f o Mrf

M= fivf & MmrEfVM7TEf

M= finfa & Mm7mEfAMTEf

M,m=Xf s Malef

M, =Ff < Fk>0.M7lE=f

M,m =G f o VE>0.M,7F=f

Mm=fiUfs & 3k>0. M7k = fanVj<k.Mnl=f
M,m=fiRfs & Vk>0.(Vj<k. .Ml f1)— M,x* = fa
Formal verification 2 Marius Minea

Model Checking Basics 8

Linear Temporal Logic (LTL)

— defined by Pnueli in 1977 (Turing Award 1996)

— describes events along an execution trace = linear structure

e.g. an event happens in the future; a property is invariant starting
from a given timepoint; an event follows another event

Temporal operators (truth modalities along an execution trace):

e X: in the next state o
e F: sometime in the future (incl. now) <
e G: globally (in every future state, starting now) O
e U : until; propy must hold until propy appears
sometimes we also define

e R (release): appearance of prop; releases the need for props

Formal verification 2 Marius Minea
Model Checking Basics 11

The temporal logic CTL*

Some properties cannot be expressed in the linear time model:

e.g. it is possible to reach a state

= alternative model: computation trees:

infinite unfolding of state-transition system starting from initial state

(wait)

o~
—~req ————ack)

Formal verification 2 Marius Minea

Model Checking Basics

Syntax of LTL Formulas

— we wish a property to hold for all trajectories
= we use the universal quantifier A

— formulas are of the form A f, where f is a path formula

— Syntax of path formulas
fua=p (for p € AP)
[=fil AVl finf2
[XfilFfilGfi|l AV2] iR f2

Formal verification 2

Model Checking Basics

Structure of CTL* Formulas

Marius Minea

In addition to LTL operators:
existential quantifier E (there exists a path)

Two types of formulas:
— state formulas, evaluated in a state

f=rp (unde p € AP)
[=fil vl finfe
|Eg| Ag (where g = path formula)

— path formulas, evaluated along a path
g = f (where f = state formula)

[=91 191Va2|g1ng2

| Xg1|Fg11Gg1|91Ug2|91Rg

Semantics: similar to LTL, plus:
M,s=Eg < 3 a path « from s such that M, 7 =g

Formal verification 2

Marius Minea

Model Checking Basics 13

Relations among temporal operators

o fAg=-(=fV-g)
e fRg=~(=fU~-g)
e Ff=trueuUf

e Gf=-F~f

e Af=-E~f

= Operators -, vV, X, U and Esuffice to express any CTL* formula.

Formal verification 2 Marius Minea

Model Checking Basics 16

Sample CTL formulas

EF finish

It is possible to reach a state in which finish = true.
AG (send — AF ack)

Any send is eventually followed by an ack.

AF AG stable

In any execution, from a given moment on, stable holds overall.
AG (req — A [regVU grant])

A req stays always active until receiving a grant.

AG AF ready

On any path, ready holds an infinite number of times.
AG EF restart

From any state it is possible to get to the restart state.

Formal verification 2 Marius Minea

Model Checking Basics 14

A sublogic: CTL

CTL (Computation Tree Logic) [Clarke, Emerson 1981]
— sufficient in many cases, but simpler = more efficient algorithms
— branching structure, like CTL*
— quantifies over all possible execution paths from a state
— operators X, F, G, U, Rmust be immediately preceded by Aor E
— syntax of path formulas:
gu=Xf|Ff[Gf|fiVUfa| iR f2

Formal verification 2 Marius Minea

Model Checking Basics 17

Relations among various logics

CTL and LTL are incomparable:

—AFGpisin LTL, has no CTL equivalent

— AGEFpisin CTL, has no LTL equivalent

— their disjunction is in CTL*, but not in CTL, nor LTL

Some techniques (compositionality, abstraction) need restrictions:
typically, only the universal quantifier A is allowed

— ACTL (included in CTL, incomparable to LTL)

— ACTL* (included in CTL*, more expressive than LTL)

Formal verification 2 Marius Minea

Model Checking Basics 15

CTL: fundamental and derived operators

10 combinations, all expressible using EX, EGsi EU:
o AXf=-EX~f

e EF f = E[trueVU f]

e AF f =-EG~f

e AG f=-EF~f

e A[fUg]=-EG-gA-E[~gU(~fA-g)]

e E[fRg]=-A[~fU~yg]

e A[fRg]=-E[~fU—yg]

Formal verification 2 Marius Minea

Model Checking Basics 18

The notion of fairness

in practice: reasonable assumptions of the sort:

— an arbiter does not continuously ignore a particular request
— a continuously retransmitted message reaches destination
= properties which can be expressed in CTL* but not CTL
= define a new semantics for CTL with fairness

A fairness constraint is a formula in temporal logic.
A path is fair is each constraint is true infinitely often along the path.

In particular: constraint expressed as set of states:
a fair path passes through that state infinitely often

Formal verification 2 Marius Minea

Model Checking Basics 19

CTL with fairness

Augment Kripke structure, M = (S, Sg, R, L, F), by F C 25
(F = set of state sets, {Py,---, Py}, P; C S)

inf(m) def {s| s =s; for infinitely many i}
(set of states apearing infinitely often on =)

7 is fair & VP e F.inf(r)NP # 0.
(7 passes infinitely often through any set in F)

Denote =p the satifaction relationship with fairness

Modified clauses in CTL semantics:
M,s=pp < there is a fair path from s
and p € L(s)
M,s =p Eg < 3 fair path = from s cu M,7 =p g
M,s|=p Ag < VY fair paths = from s, M,7 =p g

Formal verification 2 Marius Minea

Model Checking Basics 22

Model checking for CTL. The EG Operator

EG f: consider only states that satisfy f. Traverse backwards starting
from strongly connected components (SCC)

procedure CheckEG(f)
§'i={s| f € U(s)};
SCC :={C | C is a nontrivial SCC in S'};
T:=Ucesccf{s|s€C}
foralls € T doi(s) .= I(s) U{EG f};
while T # () do
chooses € T}
T:=TN\{s};
forall s . s1 € S’ A R(s1,s) do
if EG f ¢ 1(s1) then
I(s1) == U(s1) U{EG f};
T:=TU{s1};

Formal verification 2 Marius Minea

Model Checking BRAS del checking. Problem statement 20

Given a Kripke structure M = (S, Sg, R, L) and a formula f in temporal
logic, find the set of states S that satisfy f:
{seS|Msk=f}

The specification is satisfied if all initial states satisfy f:

Vsg € So.M,so = f
History
— independently, Clarke & Emerson, resp. Queille & Sifakis (1981).
— iniyially: 10% — 10° states. currently, symbolic techniques: ca. 10100
states

Model checking for CTL

— Decompose according to the structure of formula f. For any s € S,
compute I(s) = set of subformulas of f true in s.

— initially I(s) = L(s). Trivial for logic connectors —,V, A

— EX f: label any state with a successoor labeled by cu f.

— Other basic operators: EU and EG

Formal verification 2 Marius Minea

Model Checking Basics 23
Model checking with fairness

Consider the fairness constraint F = {Py,---, Py}, with P, C S

Let fair be a new atomic proposition, true in s iff there is a fair path
starting from s.

Thus faire L(s) & M,s =p EG true.

For the other operators, the problem is reduced to ordinary model
checking

M,sl=pp< M,s =pA fair

M,s =p EXf e M,s = EX(f A fair)

M, s =p E[f1U fo] & M,s = E[f1 U (f2 A fair)]

For M,s =p EG f we modify the previous algorithm, considering only
SCCs with Vi . C N P; # 0 (that contain at least a state from each
component of the fairness constraint)

Formal verification 2 Marius Minea

Model Checking Basics 21

Model checking for CTL. The EU Operator

E [f1 U fo]: backwards traversal from f5, as long as f; holds.

procedure CheckEU(f1, f»)

Ti={s| f2€lls)}
foralls € T dol(s) :=I(s) U{E[f1 U fal};
while T # () do

chooses € T

T:=T\{s}

forall sy . R(s1,s) do

IfE[f1U f2] €1(s1) A f1 €1(s1) then
I(s1) :==1(s1) U{E[f1 U fal};

T:=TuU{s1};
Formal verification 2 Marius Minea
Model Checking Basics 24

Complexity of model checking algorithms

— model checking CTL:

(linear in size of model and formula)
— CTL with fairness F: O(f|- (SI+|RD - |F|)
— LTL: PSPACE-complet [M] - 200D
different type of algorithm, based on a tableau (automaton) construc-
tion

— CTL*: like LTL [M] - 2005D

O(lf1- (S +[RD)

CTL: often preferred due to the polynomial algorithm
but also in LTL, the exponential is in the size of the formula (small)

Formal verification 2 Marius Minea

