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Part One

based on: Domain Specific Languages, martin-fowler.com/dslwip
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Defining Domain Specific Languages

DSL: a computer programming language of limited expressiveness fo-

cused on a particular domain

computer programming language

used to communicate with computer and between humans

should have fluency (beauty)

limited expressiveness

can’t build a software system in it

contrast: data / control / abstraction structures in general PL

domain focus

makes it useful
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Kinds of DSLs

external

use a different language than the application that uses them

SQL, XML, awk, regular expressions (and others in UNIX)

internal

use same general purpose programming language as application

but in a particular and limited way

LISP, Ruby

language workbenches

IDEs for building DSLs (abstract syntax, editors, generators)

more/different than usual parse/generate cycle
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Why use a DSL?

improved development productivity

communication with domain experts

change in execution context

e.g. handle definitions at runtime instead of compile time

alternative computational model

not just imperative
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What’s under a DSL?

A DSL manipulates an abstraction

usually done with a library / framework

interfaced through an API

DSLs are usually a front-end to such an interface

⇒ the hard part is building the framework
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DSL Patterns

appear with internal DSLs

use syntax of underlying general purpose language for visual fluency

may need:

language with special syntactic features

language where new syntax can be adapted / defined

just clever use of existing syntax
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Patterns: Function Sequence

computer();

processor();

cores(2);

processorType(i386);

disk();

diskSize(150);

disk();

diskSize(75);

diskSpeed(7200);

diskInterface(SATA);

Programming language design and analysis. Lecture 10 Marius Minea



Programming language design and analysis. Domain-specific languages 9

Function Sequence: Howto

usually with bare function calls (global if language allows)

⇒ but needs static parsing data (context variables)

currentObject = ...

...

currentObject.setValue(...);

solution: use object scoping for functions and parsing data
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Pattern: Nested Functions

computer(

processor(

cores(2),

Processor.Type.i386

),

disk(

size(150)

),

disk(

size(75),

speed(7200),

Disk.Interface.SATA

)

);
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Nested Functions: Howto

important property: evaluation order is inside-out

(parameters before function call)

⇒ good: evaluation returns fully-formed values/objects, usable further

⇒ awkward: textual order is opposite to natural sequencing

Useful language features:

named parameters (disk(75, 7200) is not suggestive)

optional arguments

variable number of arguments
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Pattern: Method Chaining

computer()

.processor()

.cores(2)

.i386()

.disk()

.size(150)

.disk()

.size(75)

.speed(7200)

.sata()

.end();
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Method Chaining Howto

Modifier methods return the host object

⇒ multiple modifiers can be invoked on the same object

the opposite of command query separation

HardDrive hd = new HardDrive();

hd.setCapacity(150);

hd.setExternal(true);

hd.setSpeed(7200);

new HardDrive().capacity(150).external().speed(7200);

Issues:

naming no longer makes clear this is a setter

problems with languages where newline is a separator

finishing problem (when to stop?), esp. with nested components
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Pattern: Nested Closure

computer do

processor do

cores 2

i386

speed 2.2

end

disk do

size 150

end

disk do

size 75

speed 7200

sata

end

end
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Nested Closure Howto

Express statement sub-elements of a function call by putting them into

a closure in an argument.

a single Nested Closure instead of several Nested Function arguments

Issues:

needs code to evaluate the closure (vs. arguments are evaluated im-

plicitly)

contents of closure is function sequence, still needs context variables

(but they can be created before closure / destroyed afterwards)

context variable can be explicit:

processor do |p|

p.cores 2

p.i386

end
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