
Programming language design and analysis

Domain-specific languages

Marius Minea

8 December 2010

Programming language design and analysis. Lecture 10 Marius Minea

Programming language design and analysis. Domain-specific languages 2

Part One

based on: Domain Specific Languages, martin-fowler.com/dslwip

Programming language design and analysis. Lecture 10 Marius Minea

Programming language design and analysis. Domain-specific languages 3

Defining Domain Specific Languages

DSL: a computer programming language of limited expressiveness fo-

cused on a particular domain

computer programming language

used to communicate with computer and between humans

should have fluency (beauty)

limited expressiveness

can’t build a software system in it

contrast: data / control / abstraction structures in general PL

domain focus

makes it useful

Programming language design and analysis. Lecture 10 Marius Minea

Programming language design and analysis. Domain-specific languages 4

Kinds of DSLs

external

use a different language than the application that uses them

SQL, XML, awk, regular expressions (and others in UNIX)

internal

use same general purpose programming language as application

but in a particular and limited way

LISP, Ruby

language workbenches

IDEs for building DSLs (abstract syntax, editors, generators)

more/different than usual parse/generate cycle

Programming language design and analysis. Lecture 10 Marius Minea

Programming language design and analysis. Domain-specific languages 5

Why use a DSL?

improved development productivity

communication with domain experts

change in execution context

e.g. handle definitions at runtime instead of compile time

alternative computational model

not just imperative

Programming language design and analysis. Lecture 10 Marius Minea

Programming language design and analysis. Domain-specific languages 6

What’s under a DSL?

A DSL manipulates an abstraction

usually done with a library / framework

interfaced through an API

DSLs are usually a front-end to such an interface

⇒ the hard part is building the framework

Programming language design and analysis. Lecture 10 Marius Minea

Programming language design and analysis. Domain-specific languages 7

DSL Patterns

appear with internal DSLs

use syntax of underlying general purpose language for visual fluency

may need:

language with special syntactic features

language where new syntax can be adapted / defined

just clever use of existing syntax

Programming language design and analysis. Lecture 10 Marius Minea

Programming language design and analysis. Domain-specific languages 8

Patterns: Function Sequence

computer();

processor();

cores(2);

processorType(i386);

disk();

diskSize(150);

disk();

diskSize(75);

diskSpeed(7200);

diskInterface(SATA);

Programming language design and analysis. Lecture 10 Marius Minea

Programming language design and analysis. Domain-specific languages 9

Function Sequence: Howto

usually with bare function calls (global if language allows)

⇒ but needs static parsing data (context variables)

currentObject = ...

...

currentObject.setValue(...);

solution: use object scoping for functions and parsing data

Programming language design and analysis. Lecture 10 Marius Minea

Programming language design and analysis. Domain-specific languages 10

Pattern: Nested Functions

computer(

processor(

cores(2),

Processor.Type.i386

),

disk(

size(150)

),

disk(

size(75),

speed(7200),

Disk.Interface.SATA

)

);

Programming language design and analysis. Lecture 10 Marius Minea

Programming language design and analysis. Domain-specific languages 11

Nested Functions: Howto

important property: evaluation order is inside-out

(parameters before function call)

⇒ good: evaluation returns fully-formed values/objects, usable further

⇒ awkward: textual order is opposite to natural sequencing

Useful language features:

named parameters (disk(75, 7200) is not suggestive)

optional arguments

variable number of arguments

Programming language design and analysis. Lecture 10 Marius Minea

Programming language design and analysis. Domain-specific languages 12

Pattern: Method Chaining

computer()

.processor()

.cores(2)

.i386()

.disk()

.size(150)

.disk()

.size(75)

.speed(7200)

.sata()

.end();

Programming language design and analysis. Lecture 10 Marius Minea

Programming language design and analysis. Domain-specific languages 13
Method Chaining Howto

Modifier methods return the host object

⇒ multiple modifiers can be invoked on the same object

the opposite of command query separation

HardDrive hd = new HardDrive();

hd.setCapacity(150);

hd.setExternal(true);

hd.setSpeed(7200);

new HardDrive().capacity(150).external().speed(7200);

Issues:

naming no longer makes clear this is a setter

problems with languages where newline is a separator

finishing problem (when to stop?), esp. with nested components

Programming language design and analysis. Lecture 10 Marius Minea

Programming language design and analysis. Domain-specific languages 14
Pattern: Nested Closure

computer do

processor do

cores 2

i386

speed 2.2

end

disk do

size 150

end

disk do

size 75

speed 7200

sata

end

end

Programming language design and analysis. Lecture 10 Marius Minea

Programming language design and analysis. Domain-specific languages 15

Nested Closure Howto

Express statement sub-elements of a function call by putting them into

a closure in an argument.

a single Nested Closure instead of several Nested Function arguments

Issues:

needs code to evaluate the closure (vs. arguments are evaluated im-

plicitly)

contents of closure is function sequence, still needs context variables

(but they can be created before closure / destroyed afterwards)

context variable can be explicit:

processor do |p|

p.cores 2

p.i386

end

Programming language design and analysis. Lecture 10 Marius Minea

