
Programming language design and analysis

Introduction

Marius Minea

27 September 2012



Why this course ?

Programming languages are fundamental
and one of the oldest CS fields

Language design is an important current issue
mainstream languages still appear and evolve (Java, C#, ...)
+ lots of domain-specific languages

Language design impacts
software design (polymorphism, reflection, ...),
security (type safety, interference),
efficiency (compilation ...), etc.

Analysis: needed in verification, testing, parallelization, certification,
performance estimation, ...



Course goals

SIGPLAN motto: ”To explore programming language
concepts and tools focusing on design, implementation and efficient use.”

Know the landscape of programming languages

Understand language features and impact of design decisions

Learn language/program analysis techniques (semantics, reasoning)

Introduction to current programming language research



Words of wisdom

“a programming language is a tool
which should assist the programmer
in the most difficult aspects of his art,
namely program design, documentation, and debugging”

[Hoare, Hints on programming language design, 1973]



Research ideas

Main programming language conferences (ACM SIGPLAN)

PoPL: Principles of Programming Languages

PLDI: Programming Language Design and Implementation

OOPSLA: Object-Oriented Programming, Languages, Systems and
Applications (now: SPLASH)

All of them have “most influential paper award” (10 years later)
+ best paper award (current year)
+ 20 years of PLDI (1979-1999)



Other potential topics [please express interest]

symbolic computation
lazy evaluation, closures, higher-order functions and continuations,
concurrency, inter-process communication and synchronization,
active objects and mobile agents,
object views, directed interfaces, and dynamic type systems,
reflection and introspection
persistent object systems and garbage collection,
error management, assertions and declarative debugging,
aspect-oriented programming,
generative programming,
constraint imperative programming,
staged compilation and virtual machines

course, Linköping University



For a start: small is beautiful

Functional programming
simple mathematical foundation: lambda calculus (possibly typed)
in pure form avoids state and mutable data

“The determined Real Programmer can write functional
programs in any language”

(paraphrasing Ed Post)

Exercise 1: program without state and variables in C

Exercise 2: simulate state and an interpreter in ML (lab)



What is programming ?

Programming encompasses three things:

1. a computation model:
a formal system that defines a language and how it is executed on

an abstract machine

2. a set of programming techniques and design principles
used to write programs in that language

3. a set of reasoning techniques for reasoning about programs and
calculating their efficiency

[vanRoy & Haridi,
Concepts, Techniques and Models of Computer Programming]



Paradigms and concepts

programming paradigm = approach to programming based on a
mathematical theory or a coherent set of principles

many languages

⇒ fewer paradigms

⇒ still fewer concepts

Key concepts form a paradigm’s core (kernel) language



Functional paradigm

Evaluate an expression and use the value for something

Discipline and idea:
Mathematics and the theory of functions

Values produced are non-mutable
Impossible to change part of a composite value
But can make a revised copy of composite value

Atemporal: no matter when done, computation produces same value
pure functional programming is side-effect free

Applicative: all computations done by applying (calling) functions

Functions are the natural abstraction (for expression evaluation)

Functions are first-class values: full-fledged data just like numbers, lists,
...

Computations driven by needs
after K. Normark, course, Aalborg U.



First-class objects

A first-class object is one that can be:
passed as an argument
returned as a value, and
stored in a data structure.

What is first-class influences your choices of abstraction:

Languages with first-class functions can represent data as procedures.

Example: represent environment
two constructors: empty environment, enlarge environment with

(symbol , value) pair
one observer: give value of symbol in environment



Advantages of simplicity

Functional / declarative operations are:
independent (do not depend on any external execution state)
stateless (no internal execution state remembered between calls)
deterministic (same result when given same arguments)

Why is functional programming important ?

Declarative programs are
compositional
naturally concurrent (since stateless)

Reasoning about declarative programs is simple [van Roy & Haridi]



Learn by interpreting

“This book brings you face-to-face with the most fundamental idea in
computer programming:

The interpreter for a computer language is just another program”
Hal Abelson

foreword to Friedman, Wand & Haynes, Essentials of Programming Languages

Writing an interpreter:
makes you think about fundamental concepts

defines the meaning of programs: semantics

⇒ our first lab assignment



Key concepts: Binding

binding a name/identifier to an object (expression/value)

static: before running the program (e.g., usual function call)

dynamic: at runtime (e.g., OO virtual method call)

Binding and variable assignment are NOT the same.
Pure functional languages have binding
but do NOT have assignment (mutable values)

Rebinding and mutation are NOT the same.



Scope

= a context to which objects (names, etc.) are associated
an identifier is visible within its scope

lexical (static) scoping
determined by program text, not by runtime execution sequence
aids modularity, understanding, reasoning (in isolation)

dynamic scoping
scope=remainder of the execution during which binding is in effect
each identifier has stack of bindings (push/pop on enter/exit scope)
meaning of code depends on past execution (of other code)

Some languages allow choice of static / dynamic scoping (e.g., Perl)



First-class functions

Functions can be:

passed as an argument
returned as a value, and
stored in a data structure.

Ex. List.map (fun x -> x + 1) [1;2;3]



Higher-order functions

= functions that return a function

e.g., (+): int -> int -> int = <fun>

(+) 3: int -> int = <fun> (same as fun x -> x + 3)

A function of several parameters can be rewritten through currying
(after Haskell Curry)

fun x y -> x + y

fun x -> fun y -> x + y



Closures
= a function together with an environment, defining its free variables
needed to implement static scoping with first-order functions

Python example [cf. Wikipedia]

def counter():

x = 0

def inc():

nonlocal x

x += 1

print(x)

return inc

counter1_inc = counter()

counter2_inc = counter()

counter1_inc() # 1

counter1_inc() # 2

counter2_inc() # 1

counter1_inc() # 3


