
Programming language design and analysis

Lambda Calculus

Marius Minea

2 October 2012

Course references:
Principles of Programming Languages, Uday Reddy, Univ. of Birmingham

Program Analysis and Understanding, Jeff Foster, Univ. of Maryland



Background. Church-Turing thesis

Lambda calculus: developed in 1930’s by Alonzo Church
initially typed, then untyped fragment

Formalizing computability:
Lambda calculus [Church]
Turing machines [1936–37]
general recursive functions [Church, Kleene, Rosser]

Church-Turing thesis: these three computational processes are equivalent,
i.e., the class of computable functions (by recursion or λ-calculus)
are precisely the effectively calculable ones (by a Turing machine).

⇒ Lambda calculus is a universal model of computation.



Syntax

e ::= x variable
| λx .e function abstraction (definition)
| e1 e2 function application

Basic ideas:
functions are values (no split b/w functions and args/results)
functions need not be named (λ-abstractions suffice)
functions are all one needs (can express numbers, if-then, etc.)

Syntax conventions:
the scope of the abstraction . extends as far right as possible
application is left-associative, e1 e2 e3 means (e1 e2) e3



Free and bound variables

The function abstraction λx .e binds the occurrence of x in e
intuitively: inside e, x is the argument; outside e it has no meaning

FV (x) = {x}
FV (λx .e) = FV (e) \ {x}
FV (e1 e2) = FV (e1) ∪ FV (e2)

A term is closed if it has no free variables.

A variable that is not free is called bound.



Substitutions

To correctly compute with λ expressions, we need to define substitutions.

Denote by e1[x → e2] the substitution of x by e2 in e1
(various other notations: e1[x := e2], e1[x/e2], e1[e2/x ])

Define:

y [x → e] =

{
e if y is the same as x
y if y is different from x

(λy .e1)[x → e2] ={
λy .e1 if y is the same as x
λy .(e1[x → e2]) if y is different from x and y 6∈ FV (e2)

(otherwise occurrences of y in e2 would be captured by λy .e1)

(e1 e2)[x → e] = (e1[x → e])(e2[x → e])



Capture-avoiding substitution

α-conversion (bound variables can be renamed)

λx .e = λy .(e[x → y ] if y 6∈ FV (e)

Then we can substitute λy .e1[x → e2] also when y ∈ FV (e2):

first rename y to some fresh variable z : λy .e1 = λz .e1[y → z ]

then substitute x with e1: λz .e1[y → z ][x → e1]



Reductions: Computing with lambda expressions

β-conversion (or β-reduction)

(λx .e1) e2 = e1[x → e2]

is the evaluation step for lambda expressions. We write:

(λx .e1) e2 −→β e1[x → e2]

η-conversion: simplifies application + abstraction

λx .e x = e if x 6∈ FV (e)



Equivalence and Confluence

Two terms are equivalent if one can be converted to each other by the
three conversion rules.

A λ-expressions may have several β-reducible subexpressions (redexes)
⇒ which one to apply first ?

Church-Rosser theorem: if a term reduces to two different terms, these in
turn reduce to a common term (diamond property).

e −→∗β e1 ∧ e −→∗β e2 ⇒ ∃e ′ . e1 −→∗β e ′ ∧ e2 −→∗β e ′



Reduction strategies

normal-order reduction
leftmost outermost redex first
also reduces under λ
if any reduction terminates, then normal order terminates

call-by-name
leftmost outermost redex first
does not reduce under λ

applicative order reduction (call by value)
only reduce (λx .e1) e2 when argument e2 is value

In programming language practice: lazy evaluation: only reduce argument
if needed, but do not duplicate expressions (evaluate at most once)


