Programming language design and analysis

Lambda Calculus
Marius Minea
2 October 2012

Course references:
Principles of Programming Languages, Uday Reddy, Univ. of Birmingham Program Analysis and Understanding, Jeff Foster, Univ. of Maryland

Background. Church-Turing thesis

Lambda calculus: developed in 1930's by Alonzo Church initially typed, then untyped fragment

Formalizing computability:

Lambda calculus	$[$ Church]
Turing machines	$[1936-37]$

Church-Turing thesis: these three computational processes are equivalent, i.e., the class of computable functions (by recursion or λ-calculus) are precisely the effectively calculable ones (by a Turing machine).
\Rightarrow Lambda calculus is a universal model of computation.

Syntax

$$
\begin{aligned}
& e::=x \\
& \left\lvert\, \begin{array}{c}
\lambda x . e \\
e_{1}
\end{array} e_{2}\right.
\end{aligned}
$$

> variable
> function abstraction (definition) function application

Basic ideas:
functions are values functions need not be named functions are all one needs
(no split b/w functions and args/results)
(λ-abstractions suffice)
(can express numbers, if-then, etc.)

Syntax conventions:
the scope of the abstraction . extends as far right as possible application is left-associative, $e_{1} e_{2} e_{3}$ means $\left(e_{1} e_{2}\right) e_{3}$

Free and bound variables

The function abstraction λx.e binds the occurrence of x in e intuitively: inside e, x is the argument; outside e it has no meaning
$F V(x)=\{x\}$
$F V(\lambda x . e)=F V(e) \backslash\{x\}$
$F V\left(e_{1} e_{2}\right)=F V\left(e_{1}\right) \cup F V\left(e_{2}\right)$
A term is closed if it has no free variables.
A variable that is not free is called bound.

Substitutions

To correctly compute with λ expressions, we need to define substitutions.

Denote by $e_{1}\left[x \rightarrow e_{2}\right]$ the substitution of x by e_{2} in e_{1} (various other notations: $e_{1}\left[x:=e_{2}\right], e_{1}\left[x / e_{2}\right], e_{1}\left[e_{2} / x\right]$)

Define:
$y[x \rightarrow e]= \begin{cases}e & \text { if } y \text { is the same as } x \\ y & \text { if } y \text { is different from } x\end{cases}$
$\left(\lambda y \cdot e_{1}\right)\left[x \rightarrow e_{2}\right]=$
$\left\{\lambda y . e_{1}\right.$ if y is the same as x
$\left\{\lambda y .\left(e_{1}\left[x \rightarrow e_{2}\right]\right)\right.$ if y is different from x and $y \notin F V\left(e_{2}\right)$
(otherwise occurrences of y in e_{2} would be captured by $\lambda y . e_{1}$)
$\left(e_{1} e_{2}\right)[x \rightarrow e]=\left(e_{1}[x \rightarrow e]\right)\left(e_{2}[x \rightarrow e]\right)$

Capture-avoiding substitution

α-conversion (bound variables can be renamed)
$\lambda x . e=\lambda y .(e[x \rightarrow y]$ if $y \notin F V(e)$
Then we can substitute $\lambda y . e_{1}\left[x \rightarrow e_{2}\right]$ also when $y \in F V\left(e_{2}\right)$: first rename y to some fresh variable $z: \quad \lambda y . e_{1}=\lambda z . e_{1}[y \rightarrow z]$ then substitute x with $e_{1}: \quad \lambda z . e_{1}[y \rightarrow z]\left[x \rightarrow e_{1}\right]$

Reductions: Computing with lambda expressions

β-conversion (or β-reduction)

$$
\left(\lambda x \cdot e_{1}\right) e_{2}=e_{1}\left[x \rightarrow e_{2}\right]
$$

is the evaluation step for lambda expressions. We write:

$$
\left(\lambda x \cdot e_{1}\right) e_{2} \longrightarrow_{\beta} e_{1}\left[x \rightarrow e_{2}\right]
$$

η-conversion: simplifies application + abstraction

$$
\lambda x . e x=e \quad \text { if } x \notin F V(e)
$$

Equivalence and Confluence

Two terms are equivalent if one can be converted to each other by the three conversion rules.

A λ-expressions may have several β-reducible subexpressions (redexes) \Rightarrow which one to apply first ?

Church-Rosser theorem: if a term reduces to two different terms, these in turn reduce to a common term (diamond property).

$$
e \longrightarrow{ }_{\beta}^{*} e_{1} \wedge e \longrightarrow \longrightarrow_{\beta}^{*} e_{2} \Rightarrow \exists e^{\prime} \cdot e_{1} \longrightarrow_{\beta}^{*} e^{\prime} \wedge e_{2} \longrightarrow{ }_{\beta}^{*} e^{\prime}
$$

Reduction strategies

normal-order reduction
leftmost outermost redex first also reduces under λ
if any reduction terminates, then normal order terminates
call-by-name
leftmost outermost redex first does not reduce under λ
applicative order reduction (call by value)
only reduce $\left(\lambda x . e_{1}\right) e_{2}$ when argument e_{2} is value
In programming language practice: lazy evaluation: only reduce argument if needed, but do not duplicate expressions (evaluate at most once)

