
Programming language design and analysis

Interfacing languages

Marius Minea

9 January 2017

Foreign Function Interface

take advantage of different language features

code reuse (libraries)

efficiency (of libraries)

increase acceptance by providing bindings to other languages

Issues to consider

function call mechanism (parameter passing)

storage layout of objects

naming conventions for external function symbols

memory management (garbage collection)

exception handling

API vs ABI

Application Binary Interface
= machine-level interface between program modules

Covers:
size and alignment of data types

calling convention

how system calls are made

function name mangling (for overloading, e.g. C++)

Calling conventions

cdecl:
caller cleans up stack
args passed right to left
regs eax, ecx, edx are caller-saved, rest: callee-saved
result returned in eax

typical for Linux/GCC

stdcall:
callee cleans up stack (must know arg count)

typical for MS Win32 API

Calling C from C++

simplest: just declare function as extern "C" ...

ensures function name is not mangled as in C++
(symbol name is just function name)

Calling C from Python: ctypes
Many Python libraries are written in C, so interfacing is natural

Python’s ctypes module can:
load C functions on the fly from shared libraries (DLLs)
translate simple data types between C and Python

import ctypes
libc = ctypes.CDLL(’/lib/libc.so.6’)
t = libc.time(None) # call C function, None = NULL
print t # use result in Python

code: ctypes tutorial + Wikipedia

types corresponding to C: c_int, c_char_p, etc
and corresponding values (None for NULL)

access to representation: .raw vs .value for strings

Python bytes objects are immutable ⇒ create_string_buffer() to
call C functions which expect mutable memory

Calling C from C#: P/Invoke
Platform Invocation Services

Two options, depending on availability of library source code (and need
to marshal function arguments)

Implicit PInvoke (C++ Interop)
usable if parameter types have same representation in managed and

unmanaged memory — no conversion required
better efficiency and type safety

Explicit PInvoke
DllImportAttribute placed before function decl

can specify type of marshaling needed
creates managed entry point with needed thunk (transition code) and

simple data conversions

One more option: IJW (It Just Works)
no DLLImport declarations but explicit marshalling code

Java to native: three options

JNI: Java Native Interface
historically first

JNA: Java Native Access
community-developed, simpler, no boilerplate/glue code

JNR: Java Native Runtime
current JEP (Enhancement Proposal), good performance

JNI: Java Native Interface

Native function is written with two extra arguments:
a JNIEnv pointer for interface to the JVM

with lots of functions to interact with the JVM
e.g. convert arrays and strings a jobject reference to the current

object (of the class where the native method is declared)

JNI Pitfalls

Triggering array copies: arrays are passed as opaque handles;
should use callbacks into JVM to get/set elements

Reaching back instead of passing arguments
usual style: pass object, access fields
here: each object access must reach (crosss) back into JVM

Native code must check for exceptions on JNI calls

Local references created have lifetime until native code completion

Memory leaks: global references created and not garbage collected

JNA: Java Native Access

simplified, no generated headers or wrappers for native code
pure Java implementation, based on libffi library

(library to interface with various calling conventions, calling any
function based on a call interface description)

but: does not support C++
slower (data accesses in Java; copies b/w C and Java; cost of calls

since type information determined at runtime, not statically)
Java code following C data may be layout-dependent and ugly

JNR :Java Native Runtime

aims to overcome the cumbersome parts and portability issues of JNI,
and the performance problems of JNA

also based on libffi, with several levels in between

wide coverage of native functions (POSIX, etc.)

proposed basis for a standard Java FFI

