
Programming language design and analysis

Types

Marius Minea

10 October 2016

Types: what and why ?

A simple definition (first programming course):
“Type = set of values together with some operations on that set”

A trivial error (at the ML prompt):
(+) 3 (fun x -> x);;

Error: This expression should not be a function,

the expected type is int

⇒ Some (syntactically correct) programs do not make sense

Types: a filter for bad programs

Generalizing:
“A type is any property of a program that we can establish
without executing the program” Krishnamurthi, PLAI book

Type system
a mechanism for distinguishing good programs from bad

(informally)

“A type system is a tractable syntactic method for proving the
absence of certain program behaviors by classifying phrases
according to the kinds of values they compute” Pierce

Can we always type things ?

(+) 1 (if unknown then 3 else (fun x -> x))

would run OK if unknown is true

would give an error otherwise
⇒ can’t (always) decide

Type systems are always prey to the Halting Problem.
⇒ a type system for a general-purpose language must always
either over- or under-approximate:

either must accept programs that will error when executed
or must reject programs that might have run without error

Krishnamurthi, PLAI

Types as a means to organize

[Cardelli and Wegner,

On Understanding Types, Data Abstraction and Polymorphism]

The following are untyped universes

bit-strings in computer memory
everything represented as bit-strings ⇒ untyped/only one type

S-expressions in (pure) Lisp
no distinction between program and data
but: some structure (more than bit-strings)

λ-expressions in the λ-calculus
everything is a function (numbers, booleans, if-then-else)

Sets in set theory
everything is an element or a set (can encode mathematics...)

Even simple things can be classified

Bitstrings can represent operations or characters, integers, ...

Some S-expressions are lists, others are LISP programs

Some λ− expressions (functions) represent booleans, or integers

Some sets may denote ordered pairs, leading to functions
⇒ Can think of untyped universes as typed
But this is an illusion unless there is some means to enforce it

Typing may be:
explicit (types part of syntax, e.g. all variables typed)
implicit (can be reconstructed: type inference)

Types as protective mechanism

Types avoid problems related to exposing internal representation

Types impose constraints which help to enforce correctness

Types avoid logical inconsistencies (“set of all sets”)

Types prevent inconsistent interactions between objects

“A type may be viewed as a set of clothes (or a suit of armor) that
protects an underlying untyped representation from arbitrary or
unintended use.” Cardelli & Wegner

“Violating the type system involves removing the protective set of
clothing and operating directly on the naked representation.”

Types, execution errors and safety

A program might have: [Cardelli, Type Systems]

trapped errors: cause computation to stop
untrapped errors: may go unnoticed

A program (fragment) is safe if it does not cause untrapped errors.

A safe language: all program fragments are safe.

But, we want more...
no untrapped errors
no trapped errors that we consider forbidden errors
programmer must avoid other trapped errors

Static and Strong Typing

Static Typing
type of every expression can be determined by static analysis

at compile-time, e.g, ML, Java, Pascal (partly unsafe)
well-typed programs are well-behaved (conservatively)

Strong Typing
Languages in which all expressions are type-consistent

although type itself may be statically unknown
can be done by introducing some run-time type checking

Static implies strong typing, but strong typing could be dynamic

Weak Typing (weak checking)
some unsafe operations detected

Pascal: untagged variants and function parameters unsafe
Modula-3: separates safe/unsafe modules

Kinds of Polymorphism

Strachey (1967) defines:
– parametric polymorphism: function works uniformly on a range
of types (with some common structure)
– ad-hoc polymorphism: function works on several different types
(may not have common structure), may behave in unrelated ways

Refined classification [Cardelli and Wegner]:

Polymorphism

universal

{
parametric
inclusion

ad-hoc

{
overloading
coercion

Monomorphism and exceptions [Cardelli & Wegner]

Overloading: integer constants may have both type int and real.
purely syntactic

Coercion: an integer value can be used where a real is expected
conversions inferred at compile time (or even runtime: LISP)

Subtyping: elements of subrange type also belong to supertype.

Value sharing: nil constant shared by all the pointer types (Pascal)
example of parametric polymorphism

4 kinds of polymorphism, revisited

I Coercion:
a single abstraction serves several types through implicit type
conversion

I Overloading:
a single identifier denotes several abstractions

I Parametric:
an abstraction operates uniformly across different types

I Inclusion:
an abstraction operates through an inclusion relation

[Wm. Paul Rogers, Reveal the magic behind subtype polymorphism,

JavaWorld, 2001]

Ad-hoc polymorphism

Overloading
different functions with same name; context used to make decision

could view as syntactic abbreviation handled by preprocessing
e.g. multiple methods with same name, if signatures are distinct

Coercion
semantic operation, converts a type to that expected by a function

(otherwise type error would occur)
can be done statically or dynamically

Distinction blurred at times. Discuss:
3 + 4 3.0 + 4 3 + 4.0 3.0 + 4.0

Universal polymorphism

Parametric polymorphism
Use of a single abstraction across different types

e.g. list abstraction ‘a list

Inclusion polymorphism
subtyping and inheritance

Duck Polymorphism

”when I see a bird that walks like a duck and swims like a duck
and quacks like a duck, I call that bird a duck.”

a form of dynamic typing
concerned with just the aspects of an object that are used,
rather than the type of the object itself (entire interface).

Offers more freedom (polymorphism without inheritance)
Does not define an explicit interface
Can result in semantic unintended behavior

