Language Support for Concurrency

November 14, 2016



Language Support for Concurrency 2

Classic concurrency constructs

e locks

e semaphores (binary, counting)

e Monitors

e conditional critical regions

Programming Language Design and Analysis. Lecture 10 Marius Minea



Language Support for Concurrency 3

1. Software Transactional Memory

based on Hoare’s Conditional Critical Regions

public int get() {
atomic (items != 0) {
items —-;

return buffer[items];

What's missing:
what is the data protected ?
when is a blocked thread released ?

Programming Language Design and Analysis. Lecture 10 Marius Minea



Language Support for Concurrency

What does STM offer ?

dynamically non-conflicting executions can operate concurrently
CCR conditions re-evaluated only on a shared update

non-blocking implementation (prevents deadlock, priority inversion)

Goals: minimal restrictions for code enclosed in atomic

low implementation overhead outside CCRs

Programming Language Design and Analysis. Lecture 10

Marius Minea



Language Support for Concurrency 5

Sample implementation [Harris,Fraser - OOPSLAOQ3]

void STMStart()

void STMAbort ()
boolean STMCommit ()
boolean STMValidate()
void STMWait ()

Programming Language Design and Analysis. Lecture 10 Marius Minea



Language Support for Concurrency 6

Sample implementation - Clojure refs

Clojure: dynamic language (Lisp dialect) compiled to Java bytecode

Refs allow shared use of mutable storage locations
mutation of location allowed only in transaction

Programming Language Design and Analysis. Lecture 10 Marius Minea



Language Support for Concurrency 7

2. Persistent Data Structures

All values are immutable
iIncluding composite ones

change is actually a function that returns a new value
old value still exists and can be used

To change state:
construct new compound value
change the reference

= can be done much easier

Programming Language Design and Analysis. Lecture 10 Marius Minea



Language Support for Concurrency

3. Actors

Everything is an actor.

Actors may
send messages to other actors
create new actors (a finite number)
designate behavior for next message received

Similar to
Smalltalk (send messages)
process algebras

Programming Language Design and Analysis. Lecture 10

Marius Minea



Language Support for Concurrency 9

4. Dataflow

Examples in Oz [Wikipedia]

— Programs wait until variables bound to values

thread
Z = X+Y % waits until both X and Y are bound.
{Browse Z} 7’ shows the value of Z.

end

thread X = 40 end

thread Y = 2 end

— immutable values (cannot change while bound)

Programming Language Design and Analysis. Lecture 10 Marius Minea



Language Support for Concurrency 10

5. Tuple Spaces

[after vanRoy and Haridi]

out (T) adds tuple T to the tuple space.

in(T) reads and removes tuple (based on pattern matching)
rd (T) reads nondistructively

eval creates a new process evaluating a tuple (used for IPC) can be implemented
with a lock, a dictionary and a concurrent queue

Programming Language Design and Analysis. Lecture 10 Marius Minea



Language Support for Concurrency 1

Concurrent Queue in Linda

init() {
out ("head", 0);
out("tail", 0);

}

put(elem) {
in("tail", ?7tail);
out("elem", tail, elem);
out("tail", tail+1l);

+

take(elem) {
in("head", 7head);
out ("head", head+1);
in("elem", head, 7elem);

¥

http://www.lindaspaces.com/teachingmaterial/LindaTutorial_Jan2006.pdf

Programming Language Design and Analysis. Lecture 10 Marius Minea


http://www.lindaspaces.com/teachingmaterial/LindaTutorial_Jan2006.pdf

