Programming language design and analysis
Logic Programming
Marius Minea

21 November 2016

Declarative programming

specify what the program should do, now how

in particular, avoid state (exposes internal implementation details)
or side effects (expose/observe computation flow)

Main exponents:
functional programming
still directly expresses formulas by which computations are done

logic programming
problem domain expressed as logic rules/implications
constraint programming
properties of solutions expressed as constraints over a given theory

Foundations of Prolog

developed ca. 1970 by Alain Colmerauer et al. in Marseille

A (pure) Prolog program is a list of Horn clauses.
a rule: Head :- Body .
where Body is a conjunction Predicate , ... , Predicate
a fact: Predicate .
equivalent to Predicate : - true .

:— means implication +
the head of a rule is the conclusion
the predicates in the body are hypotheses (premises)

Executing a program means trying to satisfy a query (goal)
i.e., determining if the goal follows as conclusion from the rules.

Prolog programs essentially encode predicate logic

Syntax of predicate logic: terms and formulas

Terms
variables v
f(t, -, tn) where f is an n-ary function and ty,--- , t, are terms.

constants can be viewed as 0-ary functions (no arguments)

Formulas (well-formed formulas)

P(t1,--- ,t,) with P an n-ary predicate, ti,--- ,t, terms

el where « is a formula

a—f where «, 3 are formulas

Vv« with v variable, a formula: universal quantification

Other usfual connectors:
anNBE ~(a—-B) (AND) aVp% -a—p (OR)

existential quantifier. Ixp f—\VX(—'go)

Compared to propositional logic: instead of propositions, predicates over terms

Prolog examples and logic meaning

desc(X, Y) :- child(X, Y).

desc(X, Z) :- child(X, Y), desc(Y, 7).
child(anna, jon).

child(jon, peter).

child(eve, jon).

child(peter, mary).

Variables in clause head are universally quantified.

Rest of variables in clause body are existentially quantified.
VXYY child(X,Y)

VXVZ .3Y (child(X,Y) A desc(Y,Z)) — desc(X, Z)

Resolution (in propositional logic)

Resolution is an inference rule that produces a new clause
from two clauses with complementary literals (p and —p).
pVa -pVp

aVp

resolution

The new clause = resolvent of the two clauses w.r.t. p
Example: rez,(pV qV —r,mpVs)=qV-rVs
Modus ponens may be seen as a special case of resolution:
pV false -pVq
false V q

Resolution is a valid inference rule:

{pVa,~pVvp}Eavp
(for any truth assignment where premises are true, conclusion is true)
Corollary: if a\V 3 is a contradition, so is (p V &) A (=p V).

We use resolution to show that a formula is a contradiction.
resolution is a method for proof by refutation

Why substitution and term unification ?

We have two formuas where a predicate may appear positive and
negated:
Vx.Vy.P(x,g(y)) and Vz.—P(z, a).
or
Vx.Vy.P(x,g(y)) and Vz.=P(a,z)
Are these contradictory 7

We may substitute a universally quantified variable with any term
= in the second case, we may substitute x — a, z — g(y)
= we obtain P(a, g(y)) and =P(a, g(y)), contradiction

In the first case, we may not substitute y and obtain a from g(y)
interpretation: we may not assume that the arbitrary function g
must also take the constant value a.

This is precisely defined by substitution and unification

Term substitutions

A substitution is a function that associates terms to variables:
{Xl — 1, ..., Xp— tn}
For example, f(x,g(y,z),a,t){x — g(y),y — f(b),t — u}
= f(g(y),g(f(b),z), a, u)
Obs: other encountered notations: x;/t;, or t;/x;

Usually postfix notation To is used for substitutions o applied to term T

The composition of two substitutions is a substitution

Term unification

Two terms t1 and tp may be unified if there is a substitution o
that makes them equal: t;o0 = tyo .
Such a substitution is called unifier.

Example: f(x,g(y)){x = a} = f(a,8(y)) = f(a,2){z = g(y)}
i.e., the substitution {x — a,z + g(y)} is a unifier .

More generally: applied to a set of pairs of terms.
The most general unifier is that from which any other unifier may be

obtained by using another substitution.

In resolution: having the clauses P(h, h,...l,) and =P(ri, ra, ... r,)
if we find a unifier for (/1, 1), ... we have a contradiction.

Unification rules

A variable x may be unified with any term ¢
if x does not occur in t not: x with f(g(y), h(x, z))
(substitution would lead to an infinite term)

Two functional terms may be unified only if they have identical functions,
and the term arguments may be pairwise unified.
in particular: only identical constants may be unified

Prolog and resolution

Prolog execution can be seen in two ways:
Match goal with head of rule or fact, until no more subgoals.

Apply resolution with negation of goal, until empty clause.

Prolog and resolution

Consider as goal: desc(X, peter).

A solution = a value for X that makes the predicate true
A formula is satisfiable if its negation is a contradiction.
We derive a contradiction using resolution.

Prolog and resolution

Consider as goal: desc(X, peter).

A solution = a value for X that makes the predicate true
A formula is satisfiable if its negation is a contradiction.
We derive a contradiction using resolution.

Write the negated goal: — desc(X, peter).
i.e., desc(X, peter) is false for any X.

Prolog and resolution

Consider as goal: desc(X, peter).

A solution = a value for X that makes the predicate true
A formula is satisfiable if its negation is a contradiction.
We derive a contradiction using resolution.

Write the negated goal: — desc(X, peter).
i.e., desc(X, peter) is false for any X.

Choose the first rule for unification (use fresh variables):
desc(X1, Y1) V — child(X1, Y1).
We get as resolvent = child(X, peter). X1=X, Yl=peter

Prolog and resolution

Consider as goal: desc(X, peter).

A solution = a value for X that makes the predicate true
A formula is satisfiable if its negation is a contradiction.
We derive a contradiction using resolution.

Write the negated goal: — desc(X, peter).
i.e., desc(X, peter) is false for any X.

Choose the first rule for unification (use fresh variables):
desc(X1, Y1) V — child(X1, Y1).
We get as resolvent = child(X, peter). X1=X, Yl=peter

Choose for unification the fact child(jon, peter) (nr. 3).
We get as resolvent the empty clause (contradiction) X=jon

Prolog and resolution

Consider as goal: desc(X, peter).

A solution = a value for X that makes the predicate true
A formula is satisfiable if its negation is a contradiction.
We derive a contradiction using resolution.

Write the negated goal: — desc(X, peter).
i.e., desc(X, peter) is false for any X.

Choose the first rule for unification (use fresh variables):
desc(X1, Y1) V — child(X1, Y1).
We get as resolvent = child(X, peter). X1=X, Yl=peter

Choose for unification the fact child(jon, peter) (nr. 3).
We get as resolvent the empty clause (contradiction) X=jon

Thus desc(X, peter) is NOT false for any X.
desc(jon, peter) is true. X=jon is a solution

Prolog and resolution

Consider as goal: desc(X, peter).

A solution = a value for X that makes the predicate true
A formula is satisfiable if its negation is a contradiction.
We derive a contradiction using resolution.

Write the negated goal: — desc(X, peter).
i.e., desc(X, peter) is false for any X.

Choose the first rule for unification (use fresh variables):
desc(X1, Y1) V — child(X1, Y1).
We get as resolvent = child(X, peter). X1=X, Yl=peter

Choose for unification the fact child(jon, peter) (nr. 3).
We get as resolvent the empty clause (contradiction) X=jon

Thus desc(X, peter) is NOT false for any X.
desc(jon, peter) is true. X=jon is a solution

Continue for other solutions....

Prolog example (cont.)

We restart with the negated goal: ~desc(X, peter).

Prolog example (cont.)

We restart with the negated goal: —~desc(X, peter).

We unify with rule 2 (renaming variables again):
desc(X2, Z2) V - child(X2, Y2) V - desc(Y2, Z2)
We get: = child(X, Y2) V- desc(Y2, peter) X2=X, Z2=peter

Prolog example (cont.)

We restart with the negated goal: —~desc(X, peter).

We unify with rule 2 (renaming variables again):
desc(X2, Z2) V - child(X2, Y2) V - desc(Y2, Z2)
We get: = child(X, Y2) V- desc(Y2, peter) X2=X, Z2=peter

We unify with child(anna, jon) (nr. 3) X=anna, Y2=jon
We get as resolvent — desc(jon, peter).

Prolog example (cont.)

We restart with the negated goal: —~desc(X, peter).

We unify with rule 2 (renaming variables again):
desc(X2, Z2) V - child(X2, Y2) V - desc(Y2, Z2)
We get: = child(X, Y2) V- desc(Y2, peter) X2=X, Z2=peter

We unify with child(anna, jon) (nr. 3) X=anna, Y2=jon
We get as resolvent — desc(jon, peter).

We've already seen desc(petre, vasile) = leads to empty clause.
= X=anna is another solution for initial question

Prolog example (cont.)

We restart with the negated goal: —~desc(X, peter).

We unify with rule 2 (renaming variables again):
desc(X2, Z2) V - child(X2, Y2) V - desc(Y2, Z2)
We get: = child(X, Y2) V- desc(Y2, peter) X2=X, Z2=peter

We unify with child(anna, jon) (nr. 3) X=anna, Y2=jon
We get as resolvent — desc(jon, peter).

We've already seen desc(petre, vasile) = leads to empty clause.

= X=anna is another solution for initial question

If goal has variables, Prolog searches for all unifications/substitutions.

With no variables, determines if predicate is true.

Example with terms: list reversal

Use constant nil and binary function ¢ (cons) to model lists.
Model n-ary function with n+ 1-ary relation (between args and result)
Model tail-recursive call using same variable in the result position.

rev3(nil, R, R).
rev3(c(H, T), Ac, R) :- rev3(T, c(H, Ac), R).
rev(L, R) :- rev3(L, nil, R)

With goal rev(c(1, c(2, c(3, nil)))), X) we get X = ¢(3, c(2, c(1, nil))).

Derivation: rev(c(1, c(2, ¢(3, nil))), X) Li=c(1,c(2,c(3,nil))), R1=X
— rev3(c(1,¢(2, ¢(3, nil))), nil, X) Hi=1, T1=c(2,c(3,nil)), Acl=nil
+ rev3(c(2, c(3, nil)), c(1, nil), X) H2=2, T2=c(3,nil), Ac2=c(1,nil)
« rev3(c(3, nil), c(2, c(1, nil)), X) H3=3, T3=nil, Ac3=c(2,c(1,nil))
<« rev3(nil, c(3, c(2, ¢(1, nil))), X) X=c(3,c(2,c(1,nil)))

