
Programming language design and analysis

Lambda Calculus

Marius Minea

25 September 2017

Course references:
Principles of Programming Languages, Uday Reddy, Univ. of Birmingham

Program Analysis and Understanding, Jeff Foster, Univ. of Maryland



Background. Church-Turing thesis

Lambda calculus: developed in 1930’s by Alonzo Church
initially typed, then untyped fragment

Formalizing computability:
Lambda calculus [Church]
Turing machines [1936–37]
general recursive functions [Church, Kleene, Rosser]

These three computational processes are equivalent,
i.e., the class of computable functions (by recursion or λ-calculus)
are precisely the effectively calculable ones (by a Turing machine).

Church-Turing thesis: these models express what is effectively
computable.

⇒ Lambda calculus is a universal model of computation.



Syntax

We’ve seen:
computation is done by functions
in general, both function and arguments can be expressions

e ::= x variable
| λx .e function abstraction (definition)
| e1 e2 function application

Basic ideas:
functions are values (no split b/w functions and args/results)
functions need not be named (λ-abstractions suffice)
functions are all one needs (can express numbers, if-then, etc.)

Syntax conventions:
the scope of the abstraction . extends as far right as possible
application is left-associative, e1 e2 e3 means (e1 e2) e3



Free and bound variables

The function abstraction λx .e binds the occurrence of x in e
intuitively: inside e, x is the argument; outside e it has no meaning

Set of free variables of an expression:

FV (x) = {x}
FV (λx .e) = FV (e) \ {x}
FV (e1 e2) = FV (e1) ∪ FV (e2)

A term is closed if it has no free variables.

A variable that is not free is called bound.



Substitutions

Calling a function means using the (actual) argument in place of the
(formal) parameter.

In most languages, this means evaluating the argument expressions.

In lambda calculus, we will just do syntactic substitution.



Substitutions

To correctly compute with λ expressions, we need to define substitutions.

Denote by e1[x → e2] the substitution of x by e2 in e1
(various other notations: e1[x := e2], e1[x/e2], e1[e2/x ])

Define:

y [x → e] =

{
e if y is the same as x
y if y is different from x

(λy .e1)[x → e2] ={
λy .e1 if y is the same as x
λy .(e1[x → e2]) if y is different from x and y 6∈ FV (e2)

(otherwise occurrences of y in e2 would be captured by λy .e1)

(e1 e2)[x → e] = (e1[x → e])(e2[x → e])



Capture-avoiding substitution

α-conversion (bound variables can be renamed)

λx .e = λy .(e[x → y ] if y 6∈ FV (e)

Then we can substitute λy .e1[x → e2] also when y ∈ FV (e2):

first rename y to some fresh variable z : λy .e1 = λz .e1[y → z ]

then substitute x with e1: λz .e1[y → z ][x → e2]



Reductions: Computing with lambda expressions

β-conversion (or β-reduction)

(λx .e1) e2 = e1[x → e2]

is the evaluation step for lambda expressions. We write:

(λx .e1) e2 −→β e1[x → e2]

η-conversion: simplifies application + abstraction

λx .e x = e if x 6∈ FV (e)



Equivalence and Confluence

Two terms are equivalent if one can be converted to each other by the
three conversion rules.

A λ-expressions may have several β-reducible subexpressions (redexes)
⇒ which one to apply first ?

Church-Rosser theorem: if a term reduces to two different terms, these in
turn reduce to a common term (diamond property).

e −→∗β e1 ∧ e −→∗β e2 ⇒ ∃e ′ . e1 −→∗β e ′ ∧ e2 −→∗β e ′



Precedence, associativity and evaluation order

Precedence

allows disambiguating expressions, without need for excess parantheses

Associativity
how to evaluate operators with same precedence
left-associative, right-associative
operators may be associative in math, but not in prog.lang.

Evaluation order
of operands for a given operator
specified or unspecified



Precedence, associativity and evaluation order

Precedence
allows disambiguating expressions, without need for excess parantheses

Associativity
how to evaluate operators with same precedence
left-associative, right-associative
operators may be associative in math, but not in prog.lang.

Evaluation order
of operands for a given operator
specified or unspecified



Precedence, associativity and evaluation order

Precedence
allows disambiguating expressions, without need for excess parantheses

Associativity

how to evaluate operators with same precedence
left-associative, right-associative
operators may be associative in math, but not in prog.lang.

Evaluation order
of operands for a given operator
specified or unspecified



Precedence, associativity and evaluation order

Precedence
allows disambiguating expressions, without need for excess parantheses

Associativity
how to evaluate operators with same precedence
left-associative, right-associative
operators may be associative in math, but not in prog.lang.

Evaluation order
of operands for a given operator
specified or unspecified



Precedence, associativity and evaluation order

Precedence
allows disambiguating expressions, without need for excess parantheses

Associativity
how to evaluate operators with same precedence
left-associative, right-associative
operators may be associative in math, but not in prog.lang.

Evaluation order

of operands for a given operator
specified or unspecified



Precedence, associativity and evaluation order

Precedence
allows disambiguating expressions, without need for excess parantheses

Associativity
how to evaluate operators with same precedence
left-associative, right-associative
operators may be associative in math, but not in prog.lang.

Evaluation order
of operands for a given operator
specified or unspecified



Reduction strategies

normal-order reduction
leftmost outermost redex first
also reduces under λ
if any reduction terminates, then normal order terminates

call-by-name
leftmost outermost redex first
does not reduce under λ

applicative order reduction (call by value)
only reduce (λx .e1) e2 when argument e2 is value

In programming language practice: lazy evaluation: only reduce argument
if needed, but do not duplicate expressions (evaluate at most once)



Recursion in lambda-calculus

Usually, recursion requires naming the recursive object.
But λ-calculus does not let us introduce names...

Start from the diverging (infinite) self-application
(λx . x x)(λx . x x)

Define another closed term that applies a function to an argument
Y = λf . (λx . f (x x))(λx . f (x x))

Y is called fixpoint combinator, because Y f = f (Y f ) (show!)


