
Asymmetric Primitives
(public key encryptions and digital signatures)



An informal, yet instructive account of 
asymmetric primitives …



Timeline of the invention of public-key cryptography

• 1970-1974 British cryptographers James Ellis and Clifford Cocks from GCHQ invent the 
possibility of non-secret key encryption and the RSA

• 1974 Ralph Merkle invented a public-key agreement that was published only in 1978

• 1976 Withfield Diffie and Martin Hellman, influenced by Ralph Merkle’s work, published
a method for public-key agreement (known as Diffie-Hellman key exchange, or Diffie-
Hellman-Merkle key exchange)

• 1977 Ron Rivest, Adi Shamir and Leonard Adleman invent the RSA, published in 1978

• 1979 Michael O. Rabin publishes the Rabin cryptosystem, a public key cryptosystem
with security equivalent to factoring

• 1985 Taher ElGamal published a method for encrypting and signing based on DHM key
exchange

• 1985 Neal Koblitz and Victor Miller independently and simultaneously introduce elliptic
curve cryptography



Why we need public-key cryptography?

• All symmetric key 
cryptosystems require a 
key to be shared 
between parties

• But in the real-world 
communication happens 
spontaneously between 
parties that did not 
interact before (i.e., 
previously shared 
secrets do not exist) and 
exchanging a secret key 
securely over a public 
channel (e.g., Internet) 
is not possible

• Answer: Exchanging information securely over an insecure channel in the absence of a 
secretly shared key



How public-key encryption works (informal)
• Use separate key for encryption and decryption (note that the decryption key must not be 

recoverable from the encryption key)



Where is public-key encryption used?

• Used everywhere, examples: 
 In your browser: HTTPS, or HTTP over SSL/TLS, whenever 

you are using the Hypertext Transfer Protocol Secure 
(HTTPS) to privately read your e-mail, browse, chat or 
whatever …

Behind your routers: IPSEC

Etc.



A more formal and constructive account of 
asymmetric primitives … 

you should learn: 
i. where is the primitive is used, 

ii. what are the standards, 
iii. how is it built, 

iv. what are its properties



Type of functions (I) Asymmetric encryption schemes
• Description (informal): an algorithm that takes as input a public key (Pb) and message 

(m, called plaintext) and returns the encrypted message (c, called ciphertext), and a 
decryption algorithm that takes as input a private key (Pv) and ciphertext (c) and 
returns the message (m) (a key generation algorithm is also needed)

• Example of use: key-exchange for encrypted tunnels SSL/TLS, IPSEC, etc.

• Standards:
To use: RSA (2048 bit or above), Diffie-Hellman (with or without ECC)
Not to use: small key versions or unpadded (textbook) versions of the above
Future use: ECC to completely replace RSA (?)

i.e., 𝑐 = 𝑒𝑃𝑏(𝑚)Asymmetric 
EncryptionPlaintext: m

Public key: Pb
Ciphertext: c

Asymmetric 
DecryptionCiphertext: c

Private key: Pv
Plaintext: m

i.e., 𝑚 = 𝑑𝑃𝑣(𝑐)



Asymmetric encryption: formal definition

• A symmetric encryption scheme is a triple of algorithms:
Gen is the key generation algorithm that takes the security 

parameter l, random coins and outputs the public and private 
key

Enc is the encryption algorithm that takes as input the public 
key and the message, then outputs the ciphertext

Dec is the decryption algorithm that takes as input the 
ciphertext and the private key and outputs the message

(𝑃𝑏, 𝑃𝑣) ← 𝐺𝑒𝑛 1𝑙

𝑐 ← 𝐸𝑛𝑐 𝑃𝑏,𝑚

𝑚 ← 𝐷𝑒𝑐 𝑃𝑣, 𝑐

• A correctness condition enforces that 𝐷𝑒𝑐 𝑃𝑣, 𝐸𝑛𝑐 𝑃𝑏,𝑚 = 𝑚

• A security condition enforces that given the public key Pb it is infeasible to compute 
the private key Pv, but this is not enough (remember SS/IND/NM security properties)



What are the desired security properties for PKC?
• Similar to what we defined in case of symmetric encryptions: active adversaries 

(CPA/CCA) and IND/NM:
 IND – indistinguishability of ciphertexts – what you already know from symmetric 

cryptosystems
 NM – non-malleability of ciphertexts – the adversary cannot modify a given challenge 

ciphertext such that it decrypts to a valid plaintext

• Pictured below are relations among security notions for PKC as proved by 
Bellare, Desai, Pointcheval & Rogaway ‘1998

NM-CPA NM-CCA1 NM-CCA2

IND-CPA IND-CCA1 IND-CCA2



Type of functions (II) Digital signatures
• Description (informal): the electronic “equivalent” of a handwritten signature, the 

signing algorithm takes the private key and message and returns a signature, the 
verification algorithm takes the public key, message and signature and checks if the 
input is genuine. (a key generation algorithm is also needed)

• Example of use: document signing, driver signing, public-key certificate signing, SSL/TLS, 
etc.

• Standards:
To use: RSA-PSS, RSA-FDH, RSA-PKCS
Not to use: small key versions of the above or unpadded (textbook) versions
Future use: N/A

i.e., s = 𝑆𝑖𝑔𝑃𝑣(𝑚)

Signature 
AlgorithmPlaintext: m

Private ley: Pv
Signature: s

Verification
AlgorithmMessage and signature: m,s

Pubic key: Pb
Valid/Invalid (1/0)



Digital signatures: formal definition
• A symmetric encryption scheme is a triple of algorithms:

Gen is the key generation algorithm that takes random coins, 
the security parameter l and outputs the public and private key

Sig is the signing algorithm that takes as input the private key 
and the message, then outputs the signature

Ver is the verification algorithm that takes as input the 
signature and the public key and outputs the 1 if the signature 
is valid or 0 otherwise

(𝑃𝑏, 𝑃𝑣) ← 𝐺𝑒𝑛 1𝑙

𝑠 ← 𝑆𝑖𝑔 𝑃𝑣,𝑚

{0,1} ← 𝑉𝑒𝑟 𝑃𝑏, 𝑠,𝑚

• A correctness condition enforces that 𝑉𝑒𝑟 𝑃𝑏, 𝑆𝑖𝑔 𝑃𝑣,𝑚 = 1

• A security condition enforces that given the public key Pb it is infeasible to 
compute the private key Pv, but this is not enough (see security properties)



What do we mean by breaking a signature?
• Existential forgery – find a valid message-signature without controlling the message

• Selective forgery – forge signature over messages that have a particular structure

• Universal forgery – forge signatures over any kind of messages (without knowing the private 
key)

• Total break – recover the private key (sign anything)

What are the adversary capabilities?
• Key-only – adversary knows only the public key

• Known-messages – adversary has valid messages-signature pairs but not at his choice

• Chosen message – adversary has messages-signature pairs at his choice (adaptive chosen-
message is a flavor of this notion where the adversary is allowed to chose messages after fixing 
the target to be forged)

To sum up: unforgeability under chosen-message attacks is the desired property
(adversary cannot forge signatures, even if he has full access tot the signing oracle)



Fundamentals - Number Theory (in 1 slide)
• Definition: A set A together with some operation × forms an abelian group if the 

operation × is: 
i. associative, i.e., (a × b) × c = a × (b × c), 
ii. comutative, i.e., a × b = b × a, 
iii. there exists an identity element e such that e × a = a × e = a,
iv. each element a has an inverse b such that a × b = b × a = e.

• 𝑍𝑛 = 0,1,2, … , 𝑛 − 1 is called the set of integers modulo n, i.e., remainders mod n, 
then 𝑍𝑛, + forms an abelian group

• 𝑍𝑛
∗ = 𝑥 ∈ 𝑍𝑛| gcd 𝑥, 𝑛 = 1 is the set of integers modulo n that are relatively primes 

to n, then 𝑍𝑛,∗ forms an abelian group

• The Euler’s totient function function is defined as 𝜑 𝑛 = |𝑍𝑛
∗ |, that is 𝜑 𝑛 =

𝑛 1 −
1

𝑝1
… 1 −

1

𝑝𝑟
where 𝑝1, … , 𝑝𝑟 are the prime factors of n

• Euler’s Theorem – strong result that builds the RSA trapdoor

∀𝑥 ∈ 𝑍𝑛
∗ , 𝑥𝜑 𝑛 ≡ 1mod 𝑛



Tools: Computational Number Theory (in 1 slide)

Efficiently Computable Prerequires

Elementary operations in 𝑍𝑛
∗ : -, +, *,

/, 𝑎𝑥 -

Greatest common divisor (GCD) and

multiplicative inverse, i.e., 𝑥−1 -

Primality testing -

Square root in 𝑍𝑛
∗ , i.e., 2 𝑥𝑚𝑜𝑑n

If and only if 

factorization known

e-th root in 𝑍𝑛
∗ , i.e., 𝑒 𝑥𝑚𝑜𝑑n If factorization known

Systems of simultaneous

congruences over co-primes

(Chinese Remaindering Theorem)

-

Not Efficiently Computable Prerequires

Logarithms, i.e., 𝑙𝑜𝑔𝑎(𝑎
𝑥)mod p

Order of the group 

sufficiently large

Factorization of an integer
Large integers with 

non-trivial factors

Square root in 𝑍𝑛
∗ , i.e., 2 𝑥𝑚𝑜𝑑n

If factorization is not 

known

e-th root in 𝑍𝑛
∗ , i.e., 𝑒 𝑥𝑚𝑜𝑑n

If factorization is not 

known

• The following computational problems make public key trapdoors possible, to build public key
trapdoors we need both problems that can be efficiently solved (encryption and decryption,
i.e., the cryptosystem is efficient) and problems that cannot be efficiently solved (finding the
private key from the public key, i.e., breaking the cryptosystem is hard)



RSA public key cryptosystem
• Key generation

1. Generate two random primesp,q

2. Compute n=pq, φ(n)=(p-1)(q-1)

3. Choose e relatively prime to φ(n)

4. Compute d such that ed≡1mod φ(n)

5. Public key is Pb=(n,e) and private key 
Pv=(n,d)

• Encryption

1. Obtain the public key Pb=(e,n)

2. Compute c=me mod n, (note that the message 
must be represented as integer mod n)

• Decryption

1. Receive the encrypted message c

2. Compute m=cd mod n by using the private key Pv

 Example (with artificially small numbers) 
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• Encryption

• Decryption

• Key generation



Real World RSA Keys
• 2048 bit RSA key from RSA factoring challenge (offered 200.000$ for its factors)

251959084756578934940271832400483985714292821262040320277771378360436620207075955562640185258807844069182906412495
150821892985591491761845028084891200728449926873928072877767359714183472702618963750149718246911650776133798590957
000973304597488084284017974291006424586918171951187461215151726546322822168699875491824224336372590851418654620435
767984233871847744479207399342365848238242811981638150106748104516603773060562016196762561338441436038339044149526
344321901146575444541784240209246165157233507787077498171257724679629263863563732899121548314381678998850404453640
23527381951378636564391212010397122822120720357 

• Question: Consider to factor by exhaustive search? What is the expected number of steps?

• You should take a look at the following:

 electrons in universe: 
8,37*1077≈83700000000000000000000000000000000000000000000000000000000000000000000000000000

 age of solar system: 1,89*1017≈189000000000000000

• Need more motivation? The following rewards were withdrawn by RSA, but still …
RSA-768  $50,000 USD (factored December 12, 2009) 

RSA-896 $75,000 USD

RSA-1024 $100,000 USD

RSA-1536  $150,000 USD

RSA-2048 $200,000 USD



RSA Computational requirements in brief

• Generating keys is the most intensive computational step as generation of two random 
primes requires: generating a random integer + testing for primality (there are ~x/ln(x) 
prime numbers up to x, so probability of success is ~1/ln(x))

• Encryption is usually the most efficient step since one can choose special form 
exponents: 3, 5, 65537 (note that primes of the form 1000…0001 are preferred)

• Decryption is always more computationally intensive than encryption because the 
decryption exponent is in the order of the modulus n

• Questions: why are exponents of the form 100…001 preferred? Why is the decryption 
exponent in the order of n?



RSA CRT speed-up

• For faster computations, RSA decryption is usually performed with Chinese-
Remaindering-Theorem

• This allows performing decryptions modulo p and q then combines them to get the 
result

• where 𝑑1 = 𝑑 𝑚𝑜𝑝 (𝑝 − 1) and 𝑑2 = 𝑑 𝑚𝑜𝑝 (𝑞 − 1)

• Questions: why is the decryption exponent reduced mod p-1 and q-1? Why this works 
faster than standard decryption?

• Note: there are alternative ways for doing the same, e.g., see in .NET implementation

 
𝑚1 = 𝑐𝑑1𝑚𝑜𝑑 𝑝

𝑚2 = 𝑐𝑑2𝑚𝑜𝑑 𝑞
⟹ 𝑚 = 𝑚1𝑞(𝑞

−1𝑚𝑜𝑑 𝑝) + 𝑚2𝑝(𝑝
−1𝑚𝑜𝑑 𝑞)



Mathematical security & properties (or vulnerabilities?)

• Relation between RSA and Factoring: no proof of equivalence between breaking 
RSA and factoring exists so far, some facts:
Factoring obviously leads to breaking the RSA
Computing a private-public RSA key pair also leads to factoring (discussed in laboratory 

exercises)
Proving that RSA decryption leads to factoring seems to be hard (or maybe this equivalence 

is not true after all)

• Many interesting properties behind the text-book RSA trapdoor, some of them 
opening door for attacks (all these will be discussed in laboratory exercises): 
Small messages

Small encryption exponents

Small decryption exponents

Messages that do not encrypt



Why text-book RSA fails in front of active adversaries?
• Question: Consider IND (indistinguishability) as security property, is textbook RSA secure under 

this property?

• Answer: No, in fact no deterministic public key cryptosystem is.

• Question: Consider an CCA adversary, can the adversary recover the full plaintext in case of 
textbook RSA?

• Answer: Yes, textbook RSA is completely insecure under CCA adversaries

Adversar
RSA Decryption Machine

c2=c1m2
e
modn

m”2=c2
d
=m1m2modn

Adversary has target ciphertext c1

Restriction c!=c1

Target message recovered m1=m”2m2
-1

modn



Secure versions of RSA: RSA-OAEP
• Bellare & Rogaway 1991

• Main idea: embed a Feistel network under 
RSA:

• OAEP has provable NM/IND security under 
CCA adversaries 

• Some historical turnarounds for OAEP:
Bellare & Rogaway proved that OAEP gives 

security on any trapdoor
Shoup proved they were wrong
Fujisaki & Okamoto proved that security holds 

for RSA
All proofs are in the Random Oracle Model but 

hash functions in practice are not random 
oracles

       ||E x f x G r r H x G r   



Introducing RSA-PKCS#1

• Good news: previous CCA attacks does not work, can be (somewhat) securely used in
practice

• Bad news: there are some attacks for special cases (small exponents, special messages,
etc.), and more, there is no proof that RSA-PKCS#1 is secure

• Good news: newer versions of PKCS#1 include RSA-OAEP as improved
encryption/decryption method

 00...00 || 00...10 || || 00...00 || mod
e

random m n

• RSA encryption according to PKCS#1 (Public-Key Cryptography Standards)
• Before encryption, message is padded as: 

• Note: the random number below has k-3-|m| bytes (at least 8) where k is the byte 
length of the modulus



The textbook RSA signature (hash then sign)
• Principle: 

To sign: hash the message then use the 
private key to sign the hash

To verify: use the public key to recover 
the hash then compare it to the hash of 
the original message

• Sign

1. Compute s=H(m)d mod n, (note that the bit-
length of the hash must be less or equal than 
that of the modulus n)

• Verify

1. Recover the hash from the signature with the 
help of the public key h’=se mod n

2. Compute the hash of the message and check 
that it is equal with the recovered hash, i.e., 
h’=H(m)

• Note: in case of RSA the signing algorithm is the reverse of encryption algorithm, this leaves the 
impression that in general signing is the reverse of encryption, but turns out not to be the case for many 
other public key cryptosystems, e.g., ElGamal

Hash Function

( )h m

RSA

( ) moddh m n

2| ( ) mod | log ,

e.g.,| ( ) mod | 4096

d

d

h m n n

h m n





e.g.,| ( ) | 128h m 

m

| |m  



RSA – Full Domain Hash (FDH)

• Principle: use a hash 
function that spans over 
the entire domain of the 
modulus

• Security: RSA-FDH is 
provable secure in the 
Random-Oracle-Model

Hash Function

m

( )h m

| |m  

RSA

( ) moddh m n

2| ( ) mod | log ,

e.g.,| ( ) mod | 4096

d

d

h m n n

h m n





2| ( ) | log ,

e.g.,| ( ) | 4096

h m n

h m







Proving RSA FDH security

• To be done as lecture and/or laboratory excercise



RSA – PKCS v.1.5

• Standard published by RSA 
laboratories as of 1991, 
current version is from 
2012

Hash Function

m

( )h m

| |m  

RSA

moddEM n

2| mod | log ,

e.g.,| mod | 4096

d

d

EM n n

EM n





e.g.,| ( ) | 128h m 

0 00 || 0 01|| 0 ff...0 ff || 0 00 || ASN.1
PS T

EM      

2| | log ,

e.g.,| mod | 4096d

EM n

EM n







RSA – Probabilistic Standard Signature (PSS)
• Designed by Bellare & Rogaway, 

also included in newer versions 
of PKCS

Hash Function

m

| |m  

Hash Function

MGF

mHash salt1padding

2padding salt

maskedDB 0xbcH



The Rabin cryptosystem
• Published in ‘79 by M.O. Rabin

• Notes:
 Rabin is not a particular case of RSA, 2 cannot be an RSA encryption exponent

 Requires padding similar to the RSA to be secure

 If the modulus is the product of two primes then there are 4 square roots (need 
redundancy/padding to decide which of them was the message)

• Question: why 2 cannot be an RSA exponent? Why are there 4 roots?

• Key generation

1. Generate two random primesp,q

2. Fix e = 2

3. Public key is Pb=(2,n) and private key 
Pv=(p,q)

• Encryption

1. Obtain the public key Pb=(2,n)

2. Compute c=m2mod n

• Decryption

1. Compute m as the square root of c



Recap: computational problems behind factoring based schemes

• All problems seem to nicely reduce one to 
another: Factoring, Rabin Decryption, RSA 
Key Generation and Euler Phi computation

• Is just RSA Decryption for which there is no 
proof that it will allow solving the others

• Note: arrow from P1 to P2 means that if 
you could solve P1, you can solve P2

FactoringFactoring

RSA 
Decryption

RSA 
Decryption

Rabin 
Decryption

Rabin 
Decryption

RSA Key RSA Key 

Euler Phi Euler Phi 

… easier problem???… easier problem???



The Diffie-Hellman-Merkle Key exchange 
– The Discrete Logarithm Terrain

• Method for securely exchanging a key over an insecure channel between two parties

• Key setup

1. Fix a prime p

2. Choose a generator g of 𝑍𝑝

• Exchange

1. 𝐴 → 𝐵: 𝑔𝑎𝑚𝑜𝑑 𝑝 n (a is a fresh secret random  value)

2. 𝐵 → 𝐴: 𝑔𝑏𝑚𝑜𝑑 𝑝 (b is a fresh secret random  value)

Where 

• Compute

1. A computes (𝑔𝑏)𝑎𝑚𝑜𝑑 𝑝 = 𝑔𝑏𝑎 = 𝑔𝑎𝑏

2. B computes (𝑔𝑎)𝑏𝑚𝑜𝑑 𝑝 = 𝑔𝑎𝑏

• Notes:
 The protocol above is vulnerable to a man-in-the-middle attack (but it’s trivial to derive secure 

versions of it) 
 The order of the group 𝑍𝑝 must have a large prime factor, usually one works with 𝑝 = 2𝑞 + 1(this is 

usually called a safe prime)



ElGamal encryption

• Remark:
 Same remark for the order of the group as in the case of Diffie-Hellman
 When computing 𝑐2 = 𝑚(𝑔𝑎)𝑘 𝑚𝑜𝑑 𝑝 multiplication is used to conceal the message, but you can 

use other operations as well (XOR, symmetric encryption, etc., with the Diffie-Hellman key)

• Key generation

1. Generate a random prime p

2. Choose a generator g 

3. Choose a random value 𝑎 ∈ (1, 𝑝 − 2)

4. Compute 𝑔𝑎𝑚𝑜𝑑 𝑝

5. Public key is Pb = (p, g, 𝑔𝑎) and private 
key is Pv = (p, g, 𝑎)

• Encryption

1. Obtain the public key Pb = (p, g, 𝑔𝑎)

2.     Choose a random value k ∈ (1, 𝑝 − 2)

3. Compute 𝑐1 = 𝑔𝑘𝑚𝑜𝑑 𝑝, 𝑐2 = 𝑚(𝑔𝑎)𝑘 𝑚𝑜𝑑 𝑝

4.      Send 𝑐 = (𝑐1, 𝑐2)

• Decryption

1. Receive the encrypted message c

2. Recover the message as m = 𝑐1
−𝑎𝑐2



ElGamal Signature
• Published by Taher ElGamal in ‘84 (dlogs were used in crypto since the ’76 work of 

Diffie&Hellman, but a dlog signing scheme eluded for many years)

• Key generation

1. Generate a random prime 𝑝

2. Generate a random integer a ∈
(1, 𝑝 − 2)

3. Compute 𝑦 = 𝑔𝑎mod p

4. Public key is 𝑃𝑏 = (𝑔, 𝑦, 𝑝) private 

key is 𝑃𝑣 = (𝑔, 𝑎, 𝑝)

• Sign

1. Generate random k ∈ (0, 𝑝 − 1)

2.      Having h the hash of the messge, compute 
𝑟 = 𝑔𝑘 𝑚𝑜𝑑 𝑝 and s = 𝑘−1 ℎ − 𝑎𝑟 𝑚𝑜𝑑 (𝑝 − 1)

3.       Output the pair (r, s) as the signature

• Verify

1. Compute the hash of the message h

2.      Verify that 𝑟 ∈ (0, 𝑝) and s ∈ (0, 𝑝 − 1) return 0 if not 

3.      Verify that 𝑔ℎ = 𝑦𝑟𝑟𝑠 return 1 if so or 0 otherwise
• Remarks:

 Key generation is cheaper than for RSA (only one prime needed), more, the prime field can be a global parameter, 
i.e., more entities can use the same fixed p

 Signing requires more computations but these are done over a prime p that is usually smaller than the RSA 
modulus, therefore its faster

 Verification is slower than for RSA (if special public exponents are used, i.e., 65537, etc.)



ElGamal – notes on security

• So far there exist no security reductions (proofs) for ElGamal signatures, nor for DSA (next), 
Schnorr signature is the simplest dlog based signature that has a security reduction to the dlog
problem but is quite absent in practice

• Selecting a random k is mandatory for the security of the ElGamal signature, if k is not random 
then the secret key is trivial to recover:

Let the first signature be 

{𝑟1= 𝑔𝑘 𝑚𝑜𝑑 𝑝, 𝑠1 = 𝑘−1 ℎ1 − 𝑎𝑟 𝑚𝑜𝑑 (𝑝 − 1)}

and the second

{𝑟2 = 𝑔𝑘 𝑚𝑜𝑑 𝑝, 𝑠2 = 𝑘−1 ℎ2 − 𝑎𝑟 𝑚𝑜𝑑 (𝑝 − 1)}

then

k = (𝑠1−𝑠2)/ ℎ1 − ℎ2

now a can be recovered from any of 𝑠1 , 𝑠2



The Digital Signature Algorithm - DSA
• Also known as DSS – Digital Signature Standard, standardized by NIST 

• It is a variation of the ElGamal signature, all previous remarks apply here as well

• It differs from ElGamal mostly at key generation and verification, resulting in smaller signatures (a small but true 
practical advantage)

• Key generation

1. Generate a random prime 𝑝 such that 
another prime 𝑞 of 160 bits divides 
𝑝 − 1

2. Select  a generator g of order q

3. Generate random a ∈ (0, 𝑞 − 1)

4. Compute 𝑦 = 𝑔𝑎mod p

5. Public key is 𝑃𝑏 = (𝑔, 𝑦, 𝑝) private key is
𝑃𝑣 = (𝑔, 𝑎, 𝑝)

• Sign

1. Generate random k ∈ (0, 𝑞 − 1)

2.      Having h the hash of the messge, compute 
𝑟 = 𝑔𝑘 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑞 and s = 𝑘−1 ℎ + 𝑎𝑟 𝑚𝑜𝑑 𝑞

3.       Output the pair (r, s) as the signature

• Verify

1. Compute the hash of the message h

2.      Verify that 𝑟 ∈ (0, 𝑞) and s ∈ (0, 𝑞) return 0 if not 

3.      Verify that 𝑣 = 𝑟 and return 1 if so or 0 otherwise, 
where 𝑣 = 𝑔𝑢1𝑦𝑢2𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑞 , 𝑢1 =
𝑤ℎ 𝑚𝑜𝑑 𝑞, 𝑢1 = 𝑟𝑤 𝑚𝑜𝑑 𝑞 , w = 𝑠−1 𝑚𝑜𝑑 𝑞

• Remark: parameter q here is fixed at 160 bits according to the output size of SHA1, it can be set to 224 and 256 for 
SHA2 (see FIPS 186-3)



Computational problems behind DLog based schemes

• All of the previous are apparently based on the 
difficulty of computing discrete logarithms, but 
there are three flavors of this problem:
• Decisional Diffie-Hellman problem (DDH) – let 
𝑦0 = 𝑔𝑎𝑏, 𝑦1 = 𝑟, and β a random bit, given 
𝑔𝑎, 𝑔𝑏, 𝑦β find β (that is, distinguish between a 

complete random value and a DH key)

• Computational Diffie-Hellman problem (CDH) –
given 𝑔𝑎, 𝑔𝑏 compute 𝑔𝑎𝑏

• Discrete Logarithms (DLog) – given 𝑔𝑎 compute 𝑎

• The security of the Diffie-Hellman key 
exchange is equivalent to CDH (and at most as 
hard as DLog)

• If DLog can be computed Factoring is easy

FactoringFactoring

DLogDLog CDHCDH DDHDDH

Diffie-Hellman 
Key Exchange

Diffie-Hellman 
Key Exchange



More on digital signatures: message recovery

• All of the previous signatures worked with the hash of the message, these are 
usually called signatures with appendix

• Signatures with message recovery also exist, for example with RSA if the message 
is smaller than the modulus one can sign directly on the message, then recover it 
from the signature

• Question: show an existential forgery on the above RSA signing scheme (to avoid 
such forgeries padding must be used). 

 Sign: compute s=md mod n, (note that the message must be smaller than the modulus n)

 Verify: recover the message from the signature with the help of the public key m=se mod n


