
Symmetric Primitives
(block ciphers, stream ciphers, hash functions, keyed hash functions and 

(pseudo)random number generators)



An informal, yet instructive account of 
symmetric primitives …



Begin with an informal question

• Question: What do you expect from 
cryptography?

• (Potentially correct) Answer: Protect you 
stored data & ongoing communications 
(let’s call this simply protect messages)

• Question: Assume you are given am 
encryption box (call it symmetric 
encryption) that encrypts your data with 
a key. Is your data now protected?

• (At least incomplete) Answer: Yes, as long 
as the adversary cannot find/guess the 
key … or maybe not 
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A practical example – the Enigma machine
• A rotor cipher machine (several versions of it), elements:

 26 lamps (output, ciphertext) & keys (input, plaintext)

 3 or 5 (usually) rotors 

 at most 13 plugs that can connect each two letters on the plug-board (part of the key)

a) rotors (3)

b) lamps (26)

c) keys (26)

d) plugboard (2x13)



How Enigma works
• When one key is pressed (letter of the 

plaintext selected), circuit is closed under that 
key, current flows through the plugboard that 
follows the 3 rotors, returns from the 
reflector and lightens up the lamp (the letter 
of the ciphertext)

• Rotors move at each step, thus a character 
will not always get encrypted to the same 
character (i.e., a polyalphabetic substitution)

© image from wikipedia.org



• A closer look to the Enigma secret key (depicted in the form of a codebook) may 
give you more insights on the security of this cryptosystem

• This is a print-screen from 
a nice tool by Dirk 
Rijmenants, see 
http://rijmenants.blogspot
.ro/2005/11/enigma-
codebook-tool.html



How secure is Enigma

• Question: how hard is to break Enigma?

• Answer (not necessarily correct): as hard as to find the key

• Question: how big is Enigma’s key?

• Answer: consider just (the way to place 3 rotors) x (the way to connect 13 plugs)
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when compared to the number of DES keys 256 = 72057594037927936 will 
quickly lead to the conclusion that Enigma (deprecated by the end of WW2) is 
stronger than DES (deprecated only by the end of the ‘90s)



How secure is Enigma
• Question: imagine you have captured a ciphertext that begins with:

zeyt sadb dikf dsak sadk jnujj

Could you tell which is the corresponding plaintext from the following:

a) attackatdawnonthewestfront

b) attackatnightonthewestfront

c) attackatduskonthewestfront

• Answer: wrong design decision in Enigma, a letter cannot map to itself! Correct answer 
is c)



Partial conclusion

• For protecting data by symmetric primitives we need: clear design principles (how to 
build the ciphers) and a formal treatment of security properties (what is the exact 
security they should offer)



A more formal and constructive account of 
symmetric primitives … 

you should learn: 
i. where is the primitive used, 

ii. what are the standards, 
iii. how is it built, 

iv. what are its properties



Type of functions (I) Symmetric encryption schemes
• Description (informal): an algorithm that takes as input a key k and message m 

called plaintext and returns the encrypted message c called ciphertext (similarly, 
algorithms for decryption and generating keys are needed)

• Example of use: encrypted tunnels SSL/TLS, IPSEC; encrypted passwords (lmhash
in Win XP); encrypted hard drives (TrueCrypt), etc.

• Standards:
Not to use: DES, RC4

To use: AES (128, 194, 256), 3DES (with 168 bit key, not recommended)

i.e., 𝑐 = 𝑒𝑘(𝑚)Symmetric 
Encryptionplaintext

key
ciphertext



Symmetric encryption: formal definition

• A symmetric encryption scheme is a triple of algorithms:
Gen is the key generation algorithm that takes random coins, a 

security parameter (l) and outputs the key

Enc is the encryption algorithm that takes as input the key and 
some message, then outputs the ciphertext

Dec is the decryption algorithm that takes as input the 
ciphertext and the key and outputs the message

𝑘 ← 𝐺𝑒𝑛 1𝑙

𝑐 ← 𝐸𝑛𝑐 𝑘,𝑚

𝑚 ← 𝐷𝑒𝑐 𝑘, 𝑐

• A correctness condition enforces that 𝐷𝑒𝑐 𝑘, 𝐸𝑛𝑐 𝑘,𝑚 = 𝑚

• In some cases, the encryption and decryption algorithms are allowed to return 
\null on particular inputs (i.e., they refuse to encrypt/decrypt)



Design principle: product ciphers

• Substitutions and transpositions (suggested in the work of Shannon, also used 
before)
Substitution (S-Box) replaces a symbol (or group of symbols) by another symbol – creates 

confusion

Permutations (P-Box) also known as transpositions mixes the symbols inside a block –
creates diffusion

• Ciphers that use both substitutions and permutations (S-Boxes and P-boxes) are 
also called product ciphers (sometimes product ciphers denote any cipher that 
uses more than one transformation, while product ciphers with only S&P are 
called SP-networks)

• Remarks:
DES and AES, the two well known standards are product ciphers

Feistel ciphers are also product ciphers



Classification: block ciphers vs. stream ciphers
• Stream ciphers – the message is combined via a simple transformation (e.g. XOR) with a 

keystream (which is a pseudorandom stream generated by a more complex mechanism), 
operation is done one character (bit) at a time. Examples include RC4 used in SSL/TLS or A5 
used in GSM.

• Block ciphers – the message is transformed block by block (e.g., 128 bits) via a transformation 
that is depended on the key. Examples include DES, 3DES, AES.

• Remarks:
• Block ciphers can be turned into stream ciphers in certain mode of operations, e.g., counter mode (this means that 

distinction between the two is not always clear)

• Typically stream ciphers have low hardware complexity, are fast, but practical instantiations such as RC4 are not always 
secure
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Example: the one-time pad (a stream cipher)

• Answer: believe it or not, yes. The one-time pad is information-theoretically secure, i.e., cannot be 
broken regardless of computational power & ciphertext available.

• Description: generate a random key the same length as the plaintext, then simply XOR it with the 
plaintext

• Problems: 
• requires a random key stream the same length as the plaintext, but in practice you want a key as small as possible
• Since it’s symmetric the key needs to be exchanged a-priori on a secure channel, but then why not simply exchange 

the plaintext?

• Current status: there are still some practical applications where it’s useful, e.g., quantum cryptography, 
otherwise it is not an efficient solution

RNG

XOR

key stream k=k0k1...kl

ciphertext

plain text m=m0m1...ml

c=(k0 XOR k0)(k1 XOR m1)…(kl XOR ml)

• Question: could you build a cipher that cannot be broken regardless of the 
computational power of the adversary?



Design: Feistel networks
• Designed by Horst Feistel in the ’70s at IBM

• SP-networks

• How they work:
Variable number of rounds
Each block is split into right and left part (if 

equal in size, then the network is called 
balanced)

Right block is passed through a round function 
that depends on the round key

Round key is derived from the master key (via 
the key scheduling algorithm)

Security/performance trade-off: increasing the 
number of rounds and the size of the key 
results in increasing security level

Decryption is performed by walking through 
the circuit in reverse order
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Relevant property of the Feistel round

• Note that the Feistel round is invertible regardless of the properties of the round 
function, so inverting the network is straight forward as follows
 By definition, deriving the output from the input:

𝐿𝑖 = 𝑅𝑖−1, 𝑅𝑖 = 𝐿𝑖−1 ⊕𝑓𝑖 𝑅𝑖−1

 Which implies, deriving the input from the output

𝑅𝑖−1 = 𝐿𝑖 , 𝐿𝑖−1 = 𝑅𝑖 ⊕𝑓𝑖 𝐿𝑖



Design insights: DES

• Some DES facts:
Developed in the 70s at IBM based on Feistel’s design
Standardized with the input from NSA
Symmetric encryption standard between 1977-2001
Considered insecure since the end of the 90s
Replaced by AES (Rijndael) in 2001
DES is a 16 round Feistel network
DES operates on 64 bit blocks
Surprisingly, DES key is only 56 bits

• Some DES oddities:
DES has four weak keys: encryption and decryption have the same 

effect with these keys
DES has six pairs of semi-weak keys: encryption with one key from 

the pair behaves as decryption with the other
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DES round function

• How it works: the right half (32 bit) 
of the message block (64 bit) is 
expanded (48 bit) then XOR-ed with 
the round key (48 bit) and each 6 
bits are provided as input to 8 x S-
Boxes that output only 4 bits 
resulting in 32 bits that are passed 
through another permutation P

• This round transformation is applied 
16 times, each time with a distinct 
round key

RX (32 BIT)

E

48 BIT KX (48 BIT)

S1 S2 S3 S4 S5 S6 S7 S8

32 BIT

P



Examples: E, P and some S-boxes (from the standard)
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DES key scheduling

• Derives each of the round 
keys from the master key

PERMUTATION 1

KEY

C0 D0

LEFT SHIFT LEFT SHIFT

C1 D1

LEFT SHIFT LEFT SHIFT

C16 D16

etc.

PERMUTATION 2

PERMUTATION 2

K1

K16



Designs: 3DES

• 3 DES keys K1, K2, K3 in the following transformation:

• Considered to be secure so far (given that all three keys are random and 
independent) but it is slower than AES (thus no serious reasons for use in 
practice)

• Has 3 keying options: i. independent keys, ii. K1 and K2 independent but K3=K1, 
iii. all keys are equal K1=K2=K3 (this is DES)

• Main reason for practical persistence may be the electronic payment industry

       3 2 1 1 2 3,K K K K K Kc E D E m m D E D c 



Designs: AES

AES_Encrypt_Round(State, Key)

{

SubBytes(State) ;

ShiftRows(State); 

MixColumns(State); 

AddRoundKey(State, Key);

}

AES_Decrypt_Round(State, Key)

{

AddRoundKey-1(State, Key); 

MixColumns-1 (State);

ShiftRows-1 (State);

SubBytes-1 (State) ;

}

• AES facts:
Designed by Vincent Rijmen and Joan Daemen
Selected by public competition from the 5 finalists:  MARS, RC6, Rijndael, Serpent, and Twofish
The new standard as of 2001
Not a Feistel network
Available with 3 key lengths: 128, 192, 256 bits

• How AES works
Operates on a 4x4 matrix of bytes (128 bit blocks) called state
Has 10, 12 or 14 rounds according to the key size
Each round has 4 transformations: SubBytes (a substitution) is non-linear substitution where each byte is 

replaced via a look-up table, ShiftRows (a permutation) the last three rows are shifted,  MixColumns the four 
bytes of each column are combined via a linear transformation, AddRoundKey each byte of the state is 
combined with the round key via a XOR operation



Electronic Code Book (ECB)
• The message is parsed into blocks and each block is encrypted with the secret key
• Decryption is done by reversing this operation

• Question: assuming that the block cipher is secure, is this construction secure?

• Question: block ciphers work on single blocks of message, how do you extend 
them to multiple blocks?

Block Ciphers use in practice

Block Cipher 
Encryptionk Block Cipher 

Encryptionk Block Cipher 
Encryptionk

0m 1m
1m 

0c 1c
1c 



• Answer: No. Do not use ECB.

© image from wikipedia.org



Cipher Block Chaining (CBC)
• Initialization Vector (IV) is a non-secret 

random value used for randomization of 
the first output block

• Last message chunk is padded to the block 
length

• Pros: encryption is fully randomized 
and secure

• Cons: if one of the blocks is 
lost, decryption cannot be 
performed

Block Cipher 
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Some variations: Output-feedback (OFB) and Cipher Feedback (CFB)

• Pros: OFB allows 
decryption even 
when message 
blocks are lost, it 
also allows pre-
computation of 
the key stream
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Another variation: Propagating Cipher Block Chaining (PCBC)
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Counter Mode

• A counter is incremented and encrypted for each block, then XORed with the message

• Pros: decryption can still be performed if bocks are lost, key-stream can be pre-
computed

• This mainly converts the block cipher into a stream cipher

Block Cipher 
Encryptionk Block Cipher 

Encryptionk Block Cipher 
Encryptionk

0m 1m
1m 

0c 1c
1c 

salt counter salt 1counter  salt counter 



Adversary capabilities (informal) – what the 
adversary can do?

• CPA – chosen plaintext adversary, an adversary that has access to a black-box that encrypts 
plaintexts at the adversary choice

• CCA – chosen ciphertext adversary, an adversary that has access to a black-box that decrypts 
cyphertexts at the adversary choice

• Adaptive vs. non-adaptive – is an additional flavour that can be added to both CPA and CCA 
meaning that the adversary can continue (adaptive) or not (non-adaptive) to query the 
encryption/decryption box after he received the target ciphertext that he is required to break 
(obviously the adversary is not allowed to query the target ciphertext to the decryption box)



Security notions (informal)

• semantic security (SS) (Goldwasser & Micali 1982) 

Any information that can be efficiently computed with the ciphertext, can be also 
computed without the ciphertext

• indistinguishability of ciphertexts (IND)

Given two messages selected by the adversary and the encryption of one of them 
chosen at random (without adversary’s knowledge) the adversary cannot decide 

which is the encrypted message

• real or random indistinguishability (RoR)

Given a message selected by the adversary and the encryption of either this 
message or some complete random message (not known to the adversary) the 

adversary cannot decide if the ciphertext corresponds or not to its chosen plaintext



How to prove equivalences?

• Security reductions, proving that a cryptosystem that has one property has the 
other (or the reverse, if it doesn’t have one property it doesn’t have the other)

• Question: which of the previous properties is the strongest?

• Answer: under proper formalization they are all equivalent, see Goldreich –
Foundations of Cryptography, vol II, p.383 

• Question: which is easier to prove?

• Answer: generally IND or RoR are easier to prove and are the standard tool in 
proving security



Example, security reductions: IND → RoR & IND ←RoR

• Proof to be done as exercise during laboratory hours



Type of functions (II) Hash functions

• Description: an algorithm that takes as input a message of any length and turns 
it into a constant size output (usually referred as tag or simply hash)

• Example of use: assure integrity of software downloads/updates, protect stored 
passwords, etc.

• Standards:
Not to use MD5, SHA1 (not resistant to collisions)
To use SHA2 (mostly 256, 384 and 512 are somewhat slow)
Future use: SHA3 (Keccak the winner of the competition)
Alternatives: BLAKE is a lightweight design, one of the SHA3 finalists 

e.g., downloading images from ubuntu.com

Hash Function
message tag

i.e., 𝑡𝑎𝑔 = 𝐻(𝑚)



Security properties for hash functions

• The following properties are mandatory for hash functions:  
 Pre-image resistance – given the hash of some message it is infeasible to find the message

 Secondary pre-image resistance – given the hash of a message and the message it is 
infeasible to find a second message that has the same hash value

 Collision resistance – it is infeasible to find two messages that have the same hash

i.e., ℎ 𝑚
?
m

i.e., 𝑚1, ℎ 𝑚1

?
𝑚2 𝑠. 𝑡. ℎ 𝑚1 = ℎ(𝑚2)

i.e., 
?
𝑚1, 𝑚2 𝑠. 𝑡. ℎ 𝑚1 = ℎ(𝑚2)



Design principle

• The Merkle-Damgard construction provides a method for turning a collision-
resistant one-way functions into a collision-resistant hash functions

• This design stands behind MD5, SHA1 and SHA2

• The IV is fixed (not random like in block ciphers modes of operation)

Compression 
Function

IV
Compression 

Function
Compression 

Function

Message block 1 Message block 2 Message block n

H(m)



Design insights: MD5

• 4 IV’s defined as follows

• Message is processed in blocks of 512 bits 
that are further split in 128 bit chuncks
and propagated as IVs for the next block 
to be hashed (i.e., Merkle-Damgard
construction)

A= 0x67452301,

B= 0xefcdab89,

C= 0x98badcfe,

D= 0x10325476.  

Round 1 (16 x)

A

Message block (512 bit, 
processed as 32 bit words)

B C D

Round 2 (16 x)

Round 3 (16 x)

Round 4 (16 x)

0 15i 

16 31i 

32 47i 

48 63i 

[ ],0 63b i i 



MD5 round function
• Each round proceeds with the following transformation (A, B, C, and D are the 

IV’s, K and S are fixed constants and M is the message):
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• Round function is distinct for each round (still, all round functions consist in 
simple logic operations AND, OR, XOR and NOT):



Test vectors as per RFC 1321

• Examples of what you get after you hash

MD5 ("") = d41d8cd98f00b204e9800998ecf8427e

MD5 ("a") = 0cc175b9c0f1b6a831c399e269772661

MD5 ("abc") = 900150983cd24fb0d6963f7d28e17f72

MD5 ("message digest") = f96b697d7cb7938d525a2f31aaf161d0

MD5 ("abcdefghijklmnopqrstuvwxyz")=c3fcd3d76192e4007dfb496cca67e13b

MD5 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789")

= d174ab98d277d9f5a5611c2c9f419d9f

MD5("12345678901234567890123456789012345678901234567890123456...2345678

90") = 57edf4a22be3c955ac49da2e2107b67a



Type of functions (I) Keyed Hash Functions (or MACs)
• Description (informal):  an algorithm that takes a message of arbitrary length and 

and a key then outputs a tag 

• Example of use: assuring message authentication, i.e., binding a message with 
the identity of a principal that knows a key

• Standards:
Not to use: simple concatenation of key to a message is in general insecure

To use: HMAC or NMAC with one of the previous hash functions

Future use: N/A

i.e., 𝑡𝑎𝑔 = 𝑀𝐴𝐶𝑘(𝑚)
Message 

Authentication 
Code

plaintext

key
tag



Message Authentication Codes formal definition

• A message authentication code is a triple of algorithms:
Gen is the key generation algorithm that takes random coins, a 

security parameter l and outputs the key

Mac is the tag-generation algorithm that takes as input the key 
and some message, then outputs the tag

Ver is the verification algorithm that takes as input the key, the 
tag and the message and outputs 1 if the tag is valid or 0 
otherwise

𝑘 ← 𝐺𝑒𝑛 1𝑙

𝑡𝑎𝑔 ← 𝑀𝐴𝐶 𝑘,𝑚

𝑚 ← 𝑉𝑒𝑟 𝑘, 𝑡𝑎𝑔,𝑚

• A correctness condition enforces that 𝑉𝑒𝑟 𝑘,𝑀𝐴𝐶 𝑘,𝑚 ,𝑚 =1



Desired Properties for MACs

• Fortunately, there is only one strong definition of security (of course, this can be 
refined in several ways)

• MACs must have (existential) unforgeability under chosen message attacks, that 
is, an adversary that receives any number of valid message-tag pairs (i.e., pairs 
that are computed with the MAC algorithm) is unable to output a new message-
tag pair that will successfully pass through the verification algorithm



What not to use

• Question: based on the previous security definition for MAC code, is the simple 
concatenation of message to key, i.e., H(k||m), secure?

• Answer: No. Concatenation attacks are possible due to the construction of some 
hash functions (revisit MD5 and the Merkle-Damgard construction)

Compression 
Function

IV
Compression 

Function
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Function

Message block 1 Message block 2 Message block n

H(m)



HMAC

• Simple and secure
• The application of a hash function twice with an inner-padding (ipad) and outer-

padding (opad)
• ipad is B blocks of 0x36 and opad is B blocks of 0x5C, where B is the byte size of the 

block to be processed (e.g., B=64 in case of MD5 that uses blocks of 512bits)

( , ) (( opad) || (( ipad) || ))HMAC K m H K H K m  

• Can be paired with any hash function, e.g., HMAC-MD5, HMAC-SHA256, etc.

• NMAC (Nested MAC) is as simple as HMAC, however it requires changing the IV which is less 
handy when implementing 



Various paradigms of combining MACs with encryptions

• A frequent application of MAC functions is in authenticated encryption, i.e., 
assuring that an encrypted ciphertext indeed originates from the source (note 
that block ciphers are not designed for this)

• There are three paradigms employed in practice:
 Encrypt-and-MAC, i.e.,  𝐸𝑘 𝑚 ||𝑀𝐴𝐶𝑘 𝑚 , used in SSH

 MAC-then-encrypt , i.e.,  𝐸𝑘 𝑚||𝑀𝐴𝐶𝑘 𝑚 , used in SSL/TLS

 Encrypt-then-MAC, i.e.,  𝐸𝑘 𝑚 ||𝑀𝐴𝐶𝑘 𝐸𝑘 𝑚 , used in IPSec

• Encrypt-then-MAC has better security than the previous two and should be the 
desired alternative in practice

• For details, see Bellare & Namprempre, “Authenticated Encryption: Relations 
among notions and analysis of the generic composition paradigm”, 2000



Type of functions (IV) RNGs and PRNGs

• Random numbers stay at the core of any cryptosystem since you need randomness for 
the secret keys

• Description (informal):  
• TRNG – True random-number generators output random sequences based on physical processes that 

are hard/infeasible to model, i.e., white noise from a Zenner diode, oscillator drift, SRAM state at 
power-up, etc.

• PRNGs – deterministic algorithms that generate a random sequence based on a value called seed 
(they all have cycles but this does not mean they are insecure, computationally secure PRNGs exist)

• Example of use: used in any handshake SSL/TLS, IPSec, etc. that needs to generate a 
fresh session key



PRNG examples
• The linear congruential generator, an insecure and yet common solution

1 modi iX aX c n  

• Galois or Fibonacci LFSR (Linear Feedback Shift Register) are another common, insecure 
alternative

2

1 modi iX X n

• Bloom-Bloom-Shub is cryptographically secure but requires a large modulus n and is 
computationally expensive, thus almost absent in practice (𝑋0 is the seed)

• Block ciphers in counter mode or stream ciphers provide secure instantation of PRNGs (as long 
as the cipher is secure)

(𝑋0 is the seed)

(𝑋0 is the seed)



How to test RNG & PRNGs

• Various statistical tests are usually employed, none is perfect but may provide 
some degree of confidence

• Dieharder is a battery of tests used by many enthusiasts or professionals 
http://www.phy.duke.edu/~rgb/General/rand_rate.php



Questions?


