
Symmetric Primitives
(block ciphers, stream ciphers, hash functions, keyed hash functions and

(pseudo)random number generators)

An informal, yet instructive account of
symmetric primitives …

Begin with an informal question

• Question: What do you expect from
cryptography?

• (Potentially correct) Answer: Protect you
stored data & ongoing communications
(let’s call this simply protect messages)

• Question: Assume you are given am
encryption box (call it symmetric
encryption) that encrypts your data with
a key. Is your data now protected?

• (At least incomplete) Answer: Yes, as long
as the adversary cannot find/guess the
key … or maybe not

 Lorem ipsum dolor sit amet

Encryption
Box

Encryption
Box

???
 jk%q+&23ljnms*df-+jfsd9

A practical example – the Enigma machine
• A rotor cipher machine (several versions of it), elements:

 26 lamps (output, ciphertext) & keys (input, plaintext)

 3 or 5 (usually) rotors

 at most 13 plugs that can connect each two letters on the plug-board (part of the key)

a) rotors (3)

b) lamps (26)

c) keys (26)

d) plugboard (2x13)

How Enigma works
• When one key is pressed (letter of the

plaintext selected), circuit is closed under that
key, current flows through the plugboard that
follows the 3 rotors, returns from the
reflector and lightens up the lamp (the letter
of the ciphertext)

• Rotors move at each step, thus a character
will not always get encrypted to the same
character (i.e., a polyalphabetic substitution)

© image from wikipedia.org

• A closer look to the Enigma secret key (depicted in the form of a codebook) may
give you more insights on the security of this cryptosystem

• This is a print-screen from
a nice tool by Dirk
Rijmenants, see
http://rijmenants.blogspot
.ro/2005/11/enigma-
codebook-tool.html

How secure is Enigma

• Question: how hard is to break Enigma?

• Answer (not necessarily correct): as hard as to find the key

• Question: how big is Enigma’s key?

• Answer: consider just (the way to place 3 rotors) x (the way to connect 13 plugs)

3

13

26!
26 138953282533065000

13! 2

when compared to the number of DES keys 256 = 72057594037927936 will
quickly lead to the conclusion that Enigma (deprecated by the end of WW2) is
stronger than DES (deprecated only by the end of the ‘90s)

How secure is Enigma
• Question: imagine you have captured a ciphertext that begins with:

zeyt sadb dikf dsak sadk jnujj

Could you tell which is the corresponding plaintext from the following:

a) attackatdawnonthewestfront

b) attackatnightonthewestfront

c) attackatduskonthewestfront

• Answer: wrong design decision in Enigma, a letter cannot map to itself! Correct answer
is c)

Partial conclusion

• For protecting data by symmetric primitives we need: clear design principles (how to
build the ciphers) and a formal treatment of security properties (what is the exact
security they should offer)

A more formal and constructive account of
symmetric primitives …

you should learn:
i. where is the primitive used,

ii. what are the standards,
iii. how is it built,

iv. what are its properties

Type of functions (I) Symmetric encryption schemes
• Description (informal): an algorithm that takes as input a key k and message m

called plaintext and returns the encrypted message c called ciphertext (similarly,
algorithms for decryption and generating keys are needed)

• Example of use: encrypted tunnels SSL/TLS, IPSEC; encrypted passwords (lmhash
in Win XP); encrypted hard drives (TrueCrypt), etc.

• Standards:
Not to use: DES, RC4

To use: AES (128, 194, 256), 3DES (with 168 bit key, not recommended)

i.e., 𝑐 = 𝑒𝑘(𝑚)Symmetric
Encryptionplaintext

key
ciphertext

Symmetric encryption: formal definition

• A symmetric encryption scheme is a triple of algorithms:
Gen is the key generation algorithm that takes random coins, a

security parameter (l) and outputs the key

Enc is the encryption algorithm that takes as input the key and
some message, then outputs the ciphertext

Dec is the decryption algorithm that takes as input the
ciphertext and the key and outputs the message

𝑘 ← 𝐺𝑒𝑛 1𝑙

𝑐 ← 𝐸𝑛𝑐 𝑘,𝑚

𝑚 ← 𝐷𝑒𝑐 𝑘, 𝑐

• A correctness condition enforces that 𝐷𝑒𝑐 𝑘, 𝐸𝑛𝑐 𝑘,𝑚 = 𝑚

• In some cases, the encryption and decryption algorithms are allowed to return
\null on particular inputs (i.e., they refuse to encrypt/decrypt)

Design principle: product ciphers

• Substitutions and transpositions (suggested in the work of Shannon, also used
before)
Substitution (S-Box) replaces a symbol (or group of symbols) by another symbol – creates

confusion

Permutations (P-Box) also known as transpositions mixes the symbols inside a block –
creates diffusion

• Ciphers that use both substitutions and permutations (S-Boxes and P-boxes) are
also called product ciphers (sometimes product ciphers denote any cipher that
uses more than one transformation, while product ciphers with only S&P are
called SP-networks)

• Remarks:
DES and AES, the two well known standards are product ciphers

Feistel ciphers are also product ciphers

Classification: block ciphers vs. stream ciphers
• Stream ciphers – the message is combined via a simple transformation (e.g. XOR) with a

keystream (which is a pseudorandom stream generated by a more complex mechanism),
operation is done one character (bit) at a time. Examples include RC4 used in SSL/TLS or A5
used in GSM.

• Block ciphers – the message is transformed block by block (e.g., 128 bits) via a transformation
that is depended on the key. Examples include DES, 3DES, AES.

• Remarks:
• Block ciphers can be turned into stream ciphers in certain mode of operations, e.g., counter mode (this means that

distinction between the two is not always clear)

• Typically stream ciphers have low hardware complexity, are fast, but practical instantiations such as RC4 are not always
secure

Block Cipher
Stream Cipher

XOR

plaintext block

key
ciphertext block

key stream

ciphertext

key

plaintext

Block Cipherplaintext block

key
ciphertext block

...

Example: the one-time pad (a stream cipher)

• Answer: believe it or not, yes. The one-time pad is information-theoretically secure, i.e., cannot be
broken regardless of computational power & ciphertext available.

• Description: generate a random key the same length as the plaintext, then simply XOR it with the
plaintext

• Problems:
• requires a random key stream the same length as the plaintext, but in practice you want a key as small as possible
• Since it’s symmetric the key needs to be exchanged a-priori on a secure channel, but then why not simply exchange

the plaintext?

• Current status: there are still some practical applications where it’s useful, e.g., quantum cryptography,
otherwise it is not an efficient solution

RNG

XOR

key stream k=k0k1...kl

ciphertext

plain text m=m0m1...ml

c=(k0 XOR k0)(k1 XOR m1)…(kl XOR ml)

• Question: could you build a cipher that cannot be broken regardless of the
computational power of the adversary?

Design: Feistel networks
• Designed by Horst Feistel in the ’70s at IBM

• SP-networks

• How they work:
Variable number of rounds
Each block is split into right and left part (if

equal in size, then the network is called
balanced)

Right block is passed through a round function
that depends on the round key

Round key is derived from the master key (via
the key scheduling algorithm)

Security/performance trade-off: increasing the
number of rounds and the size of the key
results in increasing security level

Decryption is performed by walking through
the circuit in reverse order

F

F

F

etc.

message ciphertext

ciphertext

K0

K1

Kl-1

F

F

F

etc.

Kl-1

Kl-2

K0

message

Relevant property of the Feistel round

• Note that the Feistel round is invertible regardless of the properties of the round
function, so inverting the network is straight forward as follows
 By definition, deriving the output from the input:

𝐿𝑖 = 𝑅𝑖−1, 𝑅𝑖 = 𝐿𝑖−1 ⊕𝑓𝑖 𝑅𝑖−1

 Which implies, deriving the input from the output

𝑅𝑖−1 = 𝐿𝑖 , 𝐿𝑖−1 = 𝑅𝑖 ⊕𝑓𝑖 𝐿𝑖

Design insights: DES

• Some DES facts:
Developed in the 70s at IBM based on Feistel’s design
Standardized with the input from NSA
Symmetric encryption standard between 1977-2001
Considered insecure since the end of the 90s
Replaced by AES (Rijndael) in 2001
DES is a 16 round Feistel network
DES operates on 64 bit blocks
Surprisingly, DES key is only 56 bits

• Some DES oddities:
DES has four weak keys: encryption and decryption have the same

effect with these keys
DES has six pairs of semi-weak keys: encryption with one key from

the pair behaves as decryption with the other

INITIAL PERMUTATION

F

F

F

etc.

message

ciphertext

K1

K2

K16

L0 R0

R16 L16

REVERSE INIT. PERMUTATION

L1 R1

L2 R2

DES round function

• How it works: the right half (32 bit)
of the message block (64 bit) is
expanded (48 bit) then XOR-ed with
the round key (48 bit) and each 6
bits are provided as input to 8 x S-
Boxes that output only 4 bits
resulting in 32 bits that are passed
through another permutation P

• This round transformation is applied
16 times, each time with a distinct
round key

RX (32 BIT)

E

48 BIT KX (48 BIT)

S1 S2 S3 S4 S5 S6 S7 S8

32 BIT

P

Examples: E, P and some S-boxes (from the standard)

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27

E

 28 29

28 29 30 31 32 1

1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11

S

 3 14 10 0 6 13

2

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6

S

 7 12 0 5 14 9

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25

P

DES key scheduling

• Derives each of the round
keys from the master key

PERMUTATION 1

KEY

C0 D0

LEFT SHIFT LEFT SHIFT

C1 D1

LEFT SHIFT LEFT SHIFT

C16 D16

etc.

PERMUTATION 2

PERMUTATION 2

K1

K16

Designs: 3DES

• 3 DES keys K1, K2, K3 in the following transformation:

• Considered to be secure so far (given that all three keys are random and
independent) but it is slower than AES (thus no serious reasons for use in
practice)

• Has 3 keying options: i. independent keys, ii. K1 and K2 independent but K3=K1,
iii. all keys are equal K1=K2=K3 (this is DES)

• Main reason for practical persistence may be the electronic payment industry

 3 2 1 1 2 3,K K K K K Kc E D E m m D E D c

Designs: AES

AES_Encrypt_Round(State, Key)

{

SubBytes(State) ;

ShiftRows(State);

MixColumns(State);

AddRoundKey(State, Key);

}

AES_Decrypt_Round(State, Key)

{

AddRoundKey-1(State, Key);

MixColumns-1 (State);

ShiftRows-1 (State);

SubBytes-1 (State) ;

}

• AES facts:
Designed by Vincent Rijmen and Joan Daemen
Selected by public competition from the 5 finalists: MARS, RC6, Rijndael, Serpent, and Twofish
The new standard as of 2001
Not a Feistel network
Available with 3 key lengths: 128, 192, 256 bits

• How AES works
Operates on a 4x4 matrix of bytes (128 bit blocks) called state
Has 10, 12 or 14 rounds according to the key size
Each round has 4 transformations: SubBytes (a substitution) is non-linear substitution where each byte is

replaced via a look-up table, ShiftRows (a permutation) the last three rows are shifted, MixColumns the four
bytes of each column are combined via a linear transformation, AddRoundKey each byte of the state is
combined with the round key via a XOR operation

Electronic Code Book (ECB)
• The message is parsed into blocks and each block is encrypted with the secret key
• Decryption is done by reversing this operation

• Question: assuming that the block cipher is secure, is this construction secure?

• Question: block ciphers work on single blocks of message, how do you extend
them to multiple blocks?

Block Ciphers use in practice

Block Cipher
Encryptionk Block Cipher

Encryptionk Block Cipher
Encryptionk

0m 1m
1m

0c 1c
1c

• Answer: No. Do not use ECB.

© image from wikipedia.org

Cipher Block Chaining (CBC)
• Initialization Vector (IV) is a non-secret

random value used for randomization of
the first output block

• Last message chunk is padded to the block
length

• Pros: encryption is fully randomized
and secure

• Cons: if one of the blocks is
lost, decryption cannot be
performed

Block Cipher
Encryptionk Block Cipher

Encryptionk

IV

Block Cipher
Encryptionk

0m 1m
1m

0c 1c
1c

Block Cipher
Decryptionk Block Cipher

Decryptionk Block Cipher
Decryptionk

IV

0m 1m
1m

0c 1c
1c

Some variations: Output-feedback (OFB) and Cipher Feedback (CFB)

• Pros: OFB allows
decryption even
when message
blocks are lost, it
also allows pre-
computation of
the key stream

Bloc Cipher
Encryptionk Bloc Cipher

Encryptionk

IV

Bloc Cipher
Encryptionk

0m 1m
1m

0c 1c
1c

Bloc Cipher
Encryptionk Bloc Cipher

Encryptionk

IV

Bloc Cipher
Encryptionk

0m 1m
1m

0c 1c
1c

Another variation: Propagating Cipher Block Chaining (PCBC)

Block Cipher
Encryptionk Block Cipher

Encryptionk

IV

Block Cipher
Encryptionk

0m 1m
1m

0c
1c 1c

IV

Bloc Cipher
Decryptionk Bloc Cipher

Decryptionk Bloc Cipher
Decryptionk

0m 1m
1m

0c
1c 1c

Counter Mode

• A counter is incremented and encrypted for each block, then XORed with the message

• Pros: decryption can still be performed if bocks are lost, key-stream can be pre-
computed

• This mainly converts the block cipher into a stream cipher

Block Cipher
Encryptionk Block Cipher

Encryptionk Block Cipher
Encryptionk

0m 1m
1m

0c 1c
1c

salt counter salt 1counter salt counter

Adversary capabilities (informal) – what the
adversary can do?

• CPA – chosen plaintext adversary, an adversary that has access to a black-box that encrypts
plaintexts at the adversary choice

• CCA – chosen ciphertext adversary, an adversary that has access to a black-box that decrypts
cyphertexts at the adversary choice

• Adaptive vs. non-adaptive – is an additional flavour that can be added to both CPA and CCA
meaning that the adversary can continue (adaptive) or not (non-adaptive) to query the
encryption/decryption box after he received the target ciphertext that he is required to break
(obviously the adversary is not allowed to query the target ciphertext to the decryption box)

Security notions (informal)

• semantic security (SS) (Goldwasser & Micali 1982)

Any information that can be efficiently computed with the ciphertext, can be also
computed without the ciphertext

• indistinguishability of ciphertexts (IND)

Given two messages selected by the adversary and the encryption of one of them
chosen at random (without adversary’s knowledge) the adversary cannot decide

which is the encrypted message

• real or random indistinguishability (RoR)

Given a message selected by the adversary and the encryption of either this
message or some complete random message (not known to the adversary) the

adversary cannot decide if the ciphertext corresponds or not to its chosen plaintext

How to prove equivalences?

• Security reductions, proving that a cryptosystem that has one property has the
other (or the reverse, if it doesn’t have one property it doesn’t have the other)

• Question: which of the previous properties is the strongest?

• Answer: under proper formalization they are all equivalent, see Goldreich –
Foundations of Cryptography, vol II, p.383

• Question: which is easier to prove?

• Answer: generally IND or RoR are easier to prove and are the standard tool in
proving security

Example, security reductions: IND → RoR & IND ←RoR

• Proof to be done as exercise during laboratory hours

Type of functions (II) Hash functions

• Description: an algorithm that takes as input a message of any length and turns
it into a constant size output (usually referred as tag or simply hash)

• Example of use: assure integrity of software downloads/updates, protect stored
passwords, etc.

• Standards:
Not to use MD5, SHA1 (not resistant to collisions)
To use SHA2 (mostly 256, 384 and 512 are somewhat slow)
Future use: SHA3 (Keccak the winner of the competition)
Alternatives: BLAKE is a lightweight design, one of the SHA3 finalists

e.g., downloading images from ubuntu.com

Hash Function
message tag

i.e., 𝑡𝑎𝑔 = 𝐻(𝑚)

Security properties for hash functions

• The following properties are mandatory for hash functions:
 Pre-image resistance – given the hash of some message it is infeasible to find the message

 Secondary pre-image resistance – given the hash of a message and the message it is
infeasible to find a second message that has the same hash value

 Collision resistance – it is infeasible to find two messages that have the same hash

i.e., ℎ 𝑚
?
m

i.e., 𝑚1, ℎ 𝑚1

?
𝑚2 𝑠. 𝑡. ℎ 𝑚1 = ℎ(𝑚2)

i.e.,
?
𝑚1, 𝑚2 𝑠. 𝑡. ℎ 𝑚1 = ℎ(𝑚2)

Design principle

• The Merkle-Damgard construction provides a method for turning a collision-
resistant one-way functions into a collision-resistant hash functions

• This design stands behind MD5, SHA1 and SHA2

• The IV is fixed (not random like in block ciphers modes of operation)

Compression
Function

IV
Compression

Function
Compression

Function

Message block 1 Message block 2 Message block n

H(m)

Design insights: MD5

• 4 IV’s defined as follows

• Message is processed in blocks of 512 bits
that are further split in 128 bit chuncks
and propagated as IVs for the next block
to be hashed (i.e., Merkle-Damgard
construction)

A= 0x67452301,

B= 0xefcdab89,

C= 0x98badcfe,

D= 0x10325476.

Round 1 (16 x)

A

Message block (512 bit,
processed as 32 bit words)

B C D

Round 2 (16 x)

Round 3 (16 x)

Round 4 (16 x)

0 15i

16 31i

32 47i

48 63i

[],0 63b i i

MD5 round function
• Each round proceeds with the following transformation (A, B, C, and D are the

IV’s, K and S are fixed constants and M is the message):

,

,

(((, ,))),

.

D C

C B

B B A FR B C D M K S

A D

(, ,) () (),

(, ,) () (),

(, ,) ,

(, ,) ().

F X Y Z X Y X Z

G X Y Z X Z Y Z

H X Y Z X Y Z

I X Y Z Y X Z

• Round function is distinct for each round (still, all round functions consist in
simple logic operations AND, OR, XOR and NOT):

Test vectors as per RFC 1321

• Examples of what you get after you hash

MD5 ("") = d41d8cd98f00b204e9800998ecf8427e

MD5 ("a") = 0cc175b9c0f1b6a831c399e269772661

MD5 ("abc") = 900150983cd24fb0d6963f7d28e17f72

MD5 ("message digest") = f96b697d7cb7938d525a2f31aaf161d0

MD5 ("abcdefghijklmnopqrstuvwxyz")=c3fcd3d76192e4007dfb496cca67e13b

MD5 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789")

= d174ab98d277d9f5a5611c2c9f419d9f

MD5("12345678901234567890123456789012345678901234567890123456...2345678

90") = 57edf4a22be3c955ac49da2e2107b67a

Type of functions (I) Keyed Hash Functions (or MACs)
• Description (informal): an algorithm that takes a message of arbitrary length and

and a key then outputs a tag

• Example of use: assuring message authentication, i.e., binding a message with
the identity of a principal that knows a key

• Standards:
Not to use: simple concatenation of key to a message is in general insecure

To use: HMAC or NMAC with one of the previous hash functions

Future use: N/A

i.e., 𝑡𝑎𝑔 = 𝑀𝐴𝐶𝑘(𝑚)
Message

Authentication
Code

plaintext

key
tag

Message Authentication Codes formal definition

• A message authentication code is a triple of algorithms:
Gen is the key generation algorithm that takes random coins, a

security parameter l and outputs the key

Mac is the tag-generation algorithm that takes as input the key
and some message, then outputs the tag

Ver is the verification algorithm that takes as input the key, the
tag and the message and outputs 1 if the tag is valid or 0
otherwise

𝑘 ← 𝐺𝑒𝑛 1𝑙

𝑡𝑎𝑔 ← 𝑀𝐴𝐶 𝑘,𝑚

𝑚 ← 𝑉𝑒𝑟 𝑘, 𝑡𝑎𝑔,𝑚

• A correctness condition enforces that 𝑉𝑒𝑟 𝑘,𝑀𝐴𝐶 𝑘,𝑚 ,𝑚 =1

Desired Properties for MACs

• Fortunately, there is only one strong definition of security (of course, this can be
refined in several ways)

• MACs must have (existential) unforgeability under chosen message attacks, that
is, an adversary that receives any number of valid message-tag pairs (i.e., pairs
that are computed with the MAC algorithm) is unable to output a new message-
tag pair that will successfully pass through the verification algorithm

What not to use

• Question: based on the previous security definition for MAC code, is the simple
concatenation of message to key, i.e., H(k||m), secure?

• Answer: No. Concatenation attacks are possible due to the construction of some
hash functions (revisit MD5 and the Merkle-Damgard construction)

Compression
Function

IV
Compression

Function
Compression

Function

Message block 1 Message block 2 Message block n

H(m)

HMAC

• Simple and secure
• The application of a hash function twice with an inner-padding (ipad) and outer-

padding (opad)
• ipad is B blocks of 0x36 and opad is B blocks of 0x5C, where B is the byte size of the

block to be processed (e.g., B=64 in case of MD5 that uses blocks of 512bits)

(,) ((opad) || ((ipad) ||))HMAC K m H K H K m

• Can be paired with any hash function, e.g., HMAC-MD5, HMAC-SHA256, etc.

• NMAC (Nested MAC) is as simple as HMAC, however it requires changing the IV which is less
handy when implementing

Various paradigms of combining MACs with encryptions

• A frequent application of MAC functions is in authenticated encryption, i.e.,
assuring that an encrypted ciphertext indeed originates from the source (note
that block ciphers are not designed for this)

• There are three paradigms employed in practice:
 Encrypt-and-MAC, i.e., 𝐸𝑘 𝑚 ||𝑀𝐴𝐶𝑘 𝑚 , used in SSH

 MAC-then-encrypt , i.e., 𝐸𝑘 𝑚||𝑀𝐴𝐶𝑘 𝑚 , used in SSL/TLS

 Encrypt-then-MAC, i.e., 𝐸𝑘 𝑚 ||𝑀𝐴𝐶𝑘 𝐸𝑘 𝑚 , used in IPSec

• Encrypt-then-MAC has better security than the previous two and should be the
desired alternative in practice

• For details, see Bellare & Namprempre, “Authenticated Encryption: Relations
among notions and analysis of the generic composition paradigm”, 2000

Type of functions (IV) RNGs and PRNGs

• Random numbers stay at the core of any cryptosystem since you need randomness for
the secret keys

• Description (informal):
• TRNG – True random-number generators output random sequences based on physical processes that

are hard/infeasible to model, i.e., white noise from a Zenner diode, oscillator drift, SRAM state at
power-up, etc.

• PRNGs – deterministic algorithms that generate a random sequence based on a value called seed
(they all have cycles but this does not mean they are insecure, computationally secure PRNGs exist)

• Example of use: used in any handshake SSL/TLS, IPSec, etc. that needs to generate a
fresh session key

PRNG examples
• The linear congruential generator, an insecure and yet common solution

1 modi iX aX c n

• Galois or Fibonacci LFSR (Linear Feedback Shift Register) are another common, insecure
alternative

2

1 modi iX X n

• Bloom-Bloom-Shub is cryptographically secure but requires a large modulus n and is
computationally expensive, thus almost absent in practice (𝑋0 is the seed)

• Block ciphers in counter mode or stream ciphers provide secure instantation of PRNGs (as long
as the cipher is secure)

(𝑋0 is the seed)

(𝑋0 is the seed)

How to test RNG & PRNGs

• Various statistical tests are usually employed, none is perfect but may provide
some degree of confidence

• Dieharder is a battery of tests used by many enthusiasts or professionals
http://www.phy.duke.edu/~rgb/General/rand_rate.php

Questions?

