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Simple (classic) buffer overflow

Aleph One, Smashing the stack for fun and profit, Phrack magazine
7(49)

Overflow of any buffer placed on stack

unsafe functions: strcpy, strcat, scanf with %s

gets deleted from C standard in 2011
safe alternatives for some

but also “by-hand” overflow of index in (local) array

Reason: low abstraction level of C
(pointer arithmetic, no objects with size info)



How to protect?

Option: detect change
check if RET address altered before function return

Two basic ideas:

Check return address itself ⇒ need copy of correct value
Check bytes next to (before) ret address ⇒ canaries

terminator canary: 0, CR, LF, EOF
random canary (don’t know ⇒ can’t put back)
random XOR canary (must also know control value)

Who/how/when implements these checks?
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How to protect?

Option: hamper execution

Attacker must execute injected code:
Non-executable stack / write XOR execute

Attacker must know what address to jump to:
Address Space Layout Randomization

What flexibility does the attacker code have?
Is attack still realistic? For 32-bit vs. 64-bit ?



Advanced attacks: return-into-libc

If you can’t execute code on stack, try something else

Typical attack is to call exec or some other library function
⇒ instead of executing code (call exec), put address (and parameters)
of libc function on stack, in place of normal ret address

Which protections are effective?

Can chain attacks – put multiple library addresses on stack

Generalize: return-oriented programming



Overwriting a pointer

Function pointers (denote code)
pointers from longjmp

pointers to user functions
pointers to library functions (PLT: procedure linkage table)

or usual pointers to data

Attacks might be in two steps:
a buffer overflow overwrites a pointer (to desired address)
in later code, this is used to overwrite critical area

ret address, PLT, etc.


