
Computer Security

Software vulnerabilities. Buffer overflows.

Marius Minea

6 October 2016

Simple (classic) buffer overflow

Aleph One, Smashing the stack for fun and profit, Phrack magazine 7(49)

Overflow any stack-placed buffer accepting unchecked input

unsafe functions: strcpy, strcat, scanf with %s

gets: deleted from C standard in 2011
safe alternatives introduced for some

Danger not limited to unsafe input
also careless overflow of index in (local) array

Reason: low abstraction level of C
(pointer arithmetic, no objects with size info)

Simple example (in your lab)

SEED Labs – Buffer Overflow Vulnerability Lab 7

gcc -o stack -fno-stack-protector -z noexecstack stack.c

It should be noted that non-executable stack only makes it impossible to run shellcode on the stack, but it
does not prevent buffer-overflow attacks, because there are other ways to run malicious code after exploiting
a buffer-overflow vulnerability. The return-to-libc attack is an example. We have designed a seperate lab for
that attack. If you are interested, please see our Return-to-Libc Attack Lab for details.

If you are using our Ubuntu 12.04 VM, whether the non-executable stack protection works or not de-
pends on the CPU and the setting of your virtual machine, because this protection depends on the hardware
feature that is provided by CPU. If you find that the non-executable stack protection does not work, check
our document (“Notes on Non-Executable Stack”) that is linked to the lab’s web page, and see whether the
instruction in the document can help solve your problem. If not, then you may need to figure out the problem
yourself.

3 Guidelines

We can load the shellcode into “badfile”, but it will not be executed because our instruction pointer will not
be pointing to it. One thing we can do is to change the return address to point to the shellcode. But we have
two problems: (1) we do not know where the return address is stored, and (2) we do not know where the
shellcode is stored. To answer these questions, we need to understand the stack layout the execution enters
a function. The following figure gives an example.

str (a pointer to a string)

Return Address

Previous Frame Pointer (FP)

buffer[0] … buffer[11]

variable_a

void func (char *str) {

char buffer[12];

int variable_a;

strcpy (buffer, str);

}

Int main() {

char *str = “I am greater than 12 bytes”;

func (str);

}

C
u
rr
e
n
t
F
ra
m
e

Current FP

(a) A code example (b) Active Stack Frame in func()

High Address

Low Address

Finding the address of the memory that stores the return address. From the figure, we know, if we
can find out the address of buffer[] array, we can calculate where the return address is stored. Since
the vulnerable program is a Set-UID program, you can make a copy of this program, and run it with your
own privilege; this way you can debug the program (note that you cannot debug a Set-UID program).
In the debugger, you can figure out the address of buffer[], and thus calculate the starting point of the
malicious code. You can even modify the copied program, and ask the program to directly print out the
address of buffer[]. The address of buffer[] may be slightly different when you run the Set-UID
copy, instead of of your copy, but you should be quite close.

If the target program is running remotely, and you may not be able to rely on the debugger to find out
the address. However, you can always guess. The following facts make guessing a quite feasible approach:

• Stack usually starts at the same address.

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

How to protect?

Option: detect change
check if RET address altered before function return

Two basic ideas:

Check return address itself ⇒ need copy of correct value
Check bytes next to (before) ret address ⇒ canaries

terminator canary: 0, CR, LF, EOF
random canary (don’t know ⇒ can’t put back)
random XOR canary (must also know control value)

Who/how/when implements these checks?

How to protect?

Option: detect change
check if RET address altered before function return

Two basic ideas:
Check return address itself ⇒ need copy of correct value
Check bytes next to (before) ret address ⇒ canaries

terminator canary: 0, CR, LF, EOF
random canary (don’t know ⇒ can’t put back)
random XOR canary (must also know control value)

Who/how/when implements these checks?

Exploit: getting the address right

SEED Labs – Buffer Overflow Vulnerability Lab 8

• Stack is usually not very deep: most programs do not push more than a few hundred or a few thousand
bytes into the stack at any one time.

• Therefore the range of addresses that we need to guess is actually quite small.

Finding the starting point of the malicious code. If you can accurately calculate the address of buffer[],
you should be able to accurately calcuate the starting point of the malicious code. Even if you cannot accu-
rately calculate the address (for example, for remote programs), you can still guess. To improve the chance
of success, we can add a number of NOPs to the beginning of the malcious code; therefore, if we can jump
to any of these NOPs, we can eventually get to the malicious code. The following figure depicts the attack.

buffer [0] …... buffer [11]

Previous FP

Return Address

str

Malicious Code

buffer [0] …... buffer [11]

Previous FP

Return Address

str

Malicious Code

NOP

NOP

NOP

…… (many NOP’s)

(a) Jump to the malicious code (b) Improve the chance

S
ta
c
k
’s
 g
ro
w
in
g
 d
ir
e
c
ti
o
n

Storing an long integer in a buffer: In your exploit program, you might need to store an long integer (4
bytes) into an buffer starting at buffer[i]. Since each buffer space is one byte long, the integer will actually
occupy four bytes starting at buffer[i] (i.e., buffer[i] to buffer[i+3]). Because buffer and long are of different
types, you cannot directly assign the integer to buffer; instead you can cast the buffer+i into an long pointer,
and then assign the integer. The following code shows how to assign an long integer to a buffer starting at
buffer[i]:

char buffer[20];
long addr = 0xFFEEDD88;

long *ptr = (long *) (buffer + i);

*ptr = addr;

References

[1] Aleph One. Smashing The Stack For Fun And Profit. Phrack 49, Volume 7, Issue 49. Available at
http://www.cs.wright.edu/people/faculty/tkprasad/courses/cs781/alephOne.html

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

How to protect?

Option: hamper execution

Attacker must execute injected code:
Non-executable stack / write XOR execute

Attacker must know what address to jump to:
Address Space Layout Randomization

What flexibility does the attacker code have?
Is attack still realistic? For 32-bit vs. 64-bit ?

Advanced attacks: return-into-libc

If you can’t execute code on stack, try something else

Typical attack is to call exec or some other library function
⇒ instead of executing code (call exec), put address (and parameters)
of libc function on stack, in place of normal ret address

Which protections are effective?

Can chain attacks – put multiple library addresses on stack

Generalize: return-oriented programming

Overwriting a pointer

Function pointers (denote code)
pointers from longjmp

pointers to user functions
pointers to library functions (PLT: procedure linkage table)

or usual pointers to data

Attacks might be in two steps:
a buffer overflow overwrites a pointer (to desired address)
in later code, this is used to overwrite critical area

ret address, PLT, etc.

