Computer Security
Software vulnerabilities. Buffer overflows.
Marius Minea

6 October 2016

Simple (classic) buffer overflow

Aleph One, Smashing the stack for fun and profit, Phrack magazine 7(49)

Overflow any stack-placed buffer accepting unchecked input

unsafe functions: strcpy, strcat, scanf with s
gets: deleted from C standard in 2011
safe alternatives introduced for some

Danger not limited to unsafe input
also careless overflow of index in (local) array

Reason: low abstraction level of C
(pointer arithmetic, no objects with size info)

Simple example (in your lab)

void func (char *str) { High Address
char buffer[12];
int variable_a;
strepy (buffer, str); str (a pointer to a string)
o
E Return Address
o
Int main() { s Previous Frame Pointer (FP) Current FP
char *str = “I am greater than 12 bytes”; 5 buffer(0] .. buffer(11]
func (str);
} variable_a
Low Address
(a) A code example (b) Active Stack Frame in func()

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

How to protect?

Option: detect change
check if RET address altered before function return

Two basic ideas:

How to protect?

Option: detect change
check if RET address altered before function return

Two basic ideas:

Check return address itself = need copy of correct value

Check bytes next to (before) ret address = canaries
terminator canary: 0, CR, LF, EOF
random canary (don't know = can't put back)
random XOR canary (must also know control value)

Who/how/when implements these checks?

Exploit: getting the address right

Malicious Code

str

Previous FP

buffer [0] buffer [11]

(a) Jump to the malicious code

< Stack’s growing direction

Malicious Code

str

Previous FP

buffer [0] -..... buffer [11]

(b) Improve the chance

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

How to protect?

Option: hamper execution

Attacker must execute injected code:
Non-executable stack / write XOR execute

Attacker must know what address to jump to:

Address Space Layout Randomization

What flexibility does the attacker code have?
Is attack still realistic? For 32-bit vs. 64-bit ?

Advanced attacks: return-into-libc

If you can't execute code on stack, try something else

Typical attack is to call exec or some other library function
= instead of executing code (call exec), put address (and parameters)
of libc function on stack, in place of normal ret address

Which protections are effective?
Can chain attacks — put multiple library addresses on stack

Generalize: return-oriented programming

Overwriting a pointer

Function pointers (denote code)
pointers from longjmp
pointers to user functions
pointers to library functions (PLT: procedure linkage table)

or usual pointers to data

Attacks might be in two steps:
a buffer overflow overwrites a pointer (to desired address)
in later code, this is used to overwrite critical area
ret address, PLT, etc.

