
ETH Zurich, D-INFK
SS 2010

Prof. David Basin
Prof. Ueli Maurer

Information Security

Exercise 12

The Scyther tool as used for these exercises can be downloaded from:

http://people.inf.ethz.ch/cremersc/scyther/

Once you have started the Scyther tool, close the ’about’ window. For the exercises, we will
work with some example input files, found on the same page.

Please copy them into your own directory or desktop before you start the exercises. You
can then use ’Open file’ in the ’File’ menu and open the file indicated in the exercise.

12.1 Symmetric encryption

Open the file protocol0symm.spdl in Scyther.

a) Verify the security claims in the protocol using Scyther.

b) Explain the results.

12.2 Public-key encryption

Open the file protocol0.spdl in Scyther.

a) Verify the security claims in the protocol using Scyther.

b) Explain the difference between the two claims by using the attack you find.

12.3 Needham-Schroeder-Lowe protocol

Now open the file protocol1.spdl in Scyther. This is a version of the Needham-
Schroeder-Lowe protocol containing a typo.

a) Verify the security claims in the protocol using Scyther. You find several attacks.
Explain the attacks: why is the property violated in each case?

b) Copy the protocol file to your own directory, and call it protocol1fixed.spdl. In
the file, make sure you change protocol1 to protocol1fixed. Improve the protocol
such that the property now holds, and use Scyther to show that your improved
protocol indeed meets the requirements.

Hint: Examine the first message: {R, ni}pk(R) or compare the protocol to the fixed
Needham-Schroeder protocol shown in the lecture.

12.4 Protocol simplification

Open the protocol file protocol2.spdl. This protocol contains a rather large messages
and contains many random numbers (nonces) and hash functions. Not all of these
elements are necessary to guarantee the correctness of the protocol.

Suggest five efficiency improvements (in terms of message size or complexity) for the
protocol, and motivate your choice. Test each suggested improvement using Scyther. If
any of your suggestions fails, explain why.



12.5 Yahalom protocol

Here we recall the informal description of the Yahalom protocol. The aim of this protocol
is to exchange a new fresh symmetric key K between two principals A and B with the
help of a server S.

1. I → R : I,NI

2. R → S : R, {I,NI , NR}k(R,S)

3. S → I : {R,K,NI , NR}k(I,S), {I,K}k(R,S)

4. I → R : {I,K}k(R,S), {NR}K

Note that agents must be able to decrypt messages they receive. If they cannot, such
messages are often called “tickets” and are captured in variables of type Ticket (a
predefined type in Scyther). For session keys, introduce a user-defined type in Scyther,
which is globally declared by usertype SessionKey;.

a) Model the protocol including secrecy and authentication claims in Scyther.

b) Check the protocol claims with the tool and interpret the results you get.

12.6 Multi-protocol attacks

Updating a protocol to a new version, while some users are still using the old one, can
lead to problems.

a) Verify the concatenation of the original (broken) protocol from exercise 12.3, and your
fixed version, using Scyther. If there are violations of the security claims, report the
attacks and explain them. If it is correct, explain why.

b) In general it is safe to label the protocols using unique strings. Consider the protocol
from exercise 1. Add the following declaration to the start of the protocol file:

usertype String;

const Version1: String;

const Version2: String;

These global constants will be used to represent version strings in your protocol. For
the protocols, add the version strings like this:

send_1(I,R, { ... }pk(R) );

becomes:

send_1(I,R, Version1, { ... }pk(R) );

Also add the declarations to your protocol (protocol1fixed.spdl). Modify the
messages also to include version strings, but use Version2.

Concatenate the two input files. You can do this by typing on the command-line:

cat protocol1.spdl protocol1fixed.spdl > both.spdl

Open the resulting file both.spdl in Scyther and verify it. Explain the result.

c) If you found an attack in the previous exercise, apply the labels in a different way
such that the concatenation is correct. Explain why your new method does work.


