
Scyther 1.0

User Manual
DRAFT

Cas Cremers

May 23, 2007

Contents

1 Introduction 2

2 Background 2

3 Installation 3

4 Quick start tutorial 3

5 Input Language 4

5.1 Terms . 6
5.1.1 Atomic terms . 6
5.1.2 Tupling . 6
5.1.3 Symmetric keys . 6
5.1.4 Asymmetric keys . 6
5.1.5 Hash functions . 7
5.1.6 Predefined types . 7

5.2 Events . 7
5.2.1 Read and Send events . 7
5.2.2 Claim events . 7

5.3 Role definitions . 8
5.4 Protocol definitions . 8
5.5 Global declarations . 8
5.6 Miscellaneous . 8
5.7 Language BNF . 8

5.7.1 Input file . 8
5.7.2 Protocols . 9
5.7.3 Roles . 9

1

5.7.4 Events . 9
5.7.5 Declarations . 9
5.7.6 Terms . 10

6 Protocol modeling 10

6.1 Example: Needham-Schroeder Public Key 10

7 Scyther output 13

7.1 Results . 13
7.2 Bounding the statespace . 15
7.3 Attack graphs . 16

7.3.1 Runs . 16
7.3.2 Communication events . 18
7.3.3 Claims . 19

8 Advanced topics 19

A Full specification for Needham-Schroeder public key 19

1 Introduction

Disclaimer: This is an early draft of the manual. Constructive criti-

cism is very welcome, please contact Cas Cremers or report it on the

scyther-users mailing list.

This is the user manual for the Scyther security protocol verification tool.
This manual consists of several parts. Some background is given in Section 2.

Installing Scyther is explained in Section 3. In Section 4 we give a brief tutorial
with some very simple examples to show the basics of the tool. Then we discuss
things in more detail as we introduce the input language of the tool in Section 5,
and modeling protocols is briefly discussed in Section 6. The usage of the tool
is then explained in more detail in Section ??. Then, in Section 7 we discuss
the output formats of Scyther and how these should be interpreted. Some more
advanced topics are discussed in Section 8.

Online information

More help can be found online: see http://people.inf.ethz.ch/cremersc/

scyther/index.html for the Scyther webpages, where the most up-to-date in-
formation can be found, and where users can subscribe to the Scyther mailing
list.

2 Background

Verification whether security protocols are correct is a difficult business. In
order to handle the problem it is typically split up in parts that can somehow be

2

separated. For example, one subproblem is to find a cryptographic function that
can encrypt a message using a key, in such a way that somebody who does not
know the key, cannot retrieve the message or the key from the result. However,
given that cryptographic functions exist that fulfil certain desired properties, a
security protocol can still be wrong, as for example in [5].

Scyther is a tool for the sub-problem of security protocol verification, where
it is assumed that all cryptographic functions are perfect. The tool can be
used to find problems that arise from the way the protocol is constructed. This
problem is undecidable in general, but we can give results for bounded state
spaces. For example, we can establish for example that no attacks occur that
are of a certain length or shorter. For certain protocol classes we can decide
that a protocol is correct or not.

It is not our intention to describe the full protocol model, nor any possible
security properties here. For such matters we refer the reader to e.g. [1–4]. Thus,
in this manual we assume the reader is familiar with the black-box modeling of
security protocols and their properties.

Not only is knowledge of security protocol models needed to read this man-
ual, it is also needed to interpret the results that the tool produces in any useful
way. Blindly applying a tool to some protocol specification, and reporting that
it states “Ok” or “Fail” has no meaning at all. In fact, the reader should be very
cautious: security protocol models are intricate and it is easy to misinterpret
the results.

Having said that, one of the main goals of Scyther is to help with the analysis
of a protocol in such a way that for example attacks can be understood well.
Thus, wherever possible the tool will give useful information on the results.

3 Installation

Scyther can be downloaded from the following website:
http://people.inf.ethz.ch/cremersc/scyther/index.html

Installation instruction are included. Scyther is available for the Windows,
Linux and Mac OS platforms.

4 Quick start tutorial

Scyther takes as input a security protocol description that includes security
claims, and evaluates these.

Start Scyther by executing the scyther-gui.py program in the Scyther
directory. The program will launch two windows: the main window, in which
files are edited, and the about window, which shows some information about
the tool.

As an introductory example, we will verify the Needham-Schroeder protocol,
and investigate an attack on it.

3

Go to the file→open dialog, and open the file ns3.spdl in the Scyther di-
rectory. Your main window should look like the one in Figure 4.

Figure 1: Scyther main window with the file ns3.spdl opened

By convention, protocol description files have the extension .spdl (Security
Protocol Description Language), but it can have any name. The file used in this
example is shown in Appendix A.

Run the verification tool by selecting verify→verify claims in the menu. A
new window will briefly appear during the verification process; because in this
particular case verification is very fast, it will be immediately replaced by the
result window, as shown in Figure 4.

The result window shows a summary of the claims in the protocol, and the
verification results. Here one can find whether the protocol is correct, or false.
In the next section there will be a full explanation of the possible outcomes of
the verification process. The most important thing here is that if a protocol
claim is incorrect, there exists at least one attack on the protocol. A button is
shown next to the claim: press this button to view the attacks on the claim, as
in Figure 4.

5 Input Language

Some initial remarks on the language:

4

Figure 2: Scyther result window

Figure 3: Scyther attack window

• Comments can start with // or # (for single-line comments) or be en-
closed by /* and */ (for multi-line comments). Note that the multi-line
comments cannot be nested.

5

• Any whitespace between elements is ignored. It is therefore possible to
use whitespace (spaces, tabs, newlines) to improve readability.

• A basic identifier consists of a string of characters from the set of alphanu-
meric characters as well as the symbols ^ and -.

• The language is case-sensitive, thus NS3 is not the same identifier as ns3.

5.1 Terms

At the most basic level, Scyther manipulates terms.

5.1.1 Atomic terms

An atomic term can be any identifier, which is usually a string of alphanumeric
characters.

Atomic terms can be combined into more complex terms by several opera-
tors, such as tupling and encryption.

5.1.2 Tupling

Any two terms can combined into a term tuple: we write (x,y) for the tupling
of terms x and y. It is also allowed to write n-tuples as (x,y,z).

5.1.3 Symmetric keys

Any term can act as a key for symmetrical encryption.
The encryption of ni with a term kir is written as:

{ ni }kir

Unless kir is explicitly defined as being part of an asymmetric key pair
(explained below), this is interpreted as symmetric encryption.

5.1.4 Asymmetric keys

Asymmetric keys are typically modeled as two functions: one function that
maps the agents to their public keys, and another function that maps agents
to their secret keys. To model this, we first define the two functions, which are
usually named pk for the public key function, and sk for the secret key function.

const pk: Function;

secret sk: Function;

We also declare that these functions represent asymmetric key pairs:

inversekeys (pk,sk);

6

If defined in this way, a term encrypted with pk(x) can only be decrypted
with sk(x) and vice versa.

As an example, consider the following term. It represents the encryption of
some term ni by the term pk(I). Under normal conventions, this means that
the nonce of the initiator (ni) is encrypted with the public key of the initiator.

{ ni }pk(I)

This term can only be decrypted by an agent who knows the secret key
sk(I).

5.1.5 Hash functions

Hash functions are essentially encryptions with a function, of which the inverse
is not known by anybody.

const hash: Function;

secret unhash: Function;

inversekeys (hash, unhash);

hash(ni)

5.1.6 Predefined types

Agent Type used for agents.

Function A special type that defines a function term that can take a list of terms
as parameter. By default, it behaves like a hash function: given the term
h(x) where h is of type Function, it is impossible to derive x.

Nonce A standard type that is often used and therefore defined inside the tool.

Ticket A variable of type Ticket can be substituted by any term.

5.2 Events

5.2.1 Read and Send events

5.2.2 Claim events

There are several predefined claims.

Secret This claim requires a parameter term. Secrecy of this term is claimed as
defined in [2].

Nisynch Non-injective synchronisation as defined in [4].

Niagree Non-injective agreement as defined in [4].

7

Reachable When this claim is verified, Scyther will check whether this claim can be
reached at all. It is true iff there exists a trace in which this claim occurs.
This can be useful to check if there is no obvious error in the protocol
specification, and is in fact inserted when the --check mode of Scyther is
used.

Empty This claim will not be verified, but simply ignored. It is only useful when
Scyther is used as a back-end for other verification means. For more on
this, see Section 8.

5.3 Role definitions

5.4 Protocol definitions

5.5 Global declarations

• Constants, structures, agents, trusted, compromised etc.

5.6 Miscellaneous

The language also contains a command to include other files:

include "filename";

where filename denotes the name of the file that will be included at this point.
Using this command, it is possible to share e.g. a set of common definitions
between files. Typically this will include definitions for the key structures, and
(untrusted) agent names. Nested use of this command is possible.

5.7 Language BNF

The full BNF grammar for the input language is given below. In the strict
language definition, there are no claim terms such as Niagree and Nisynch,
and neither are there any predefined type classes such as Agent. Instead, they
are predefined constant terms in the Scyther tool itself.

5.7.1 Input file

An input file is simply a list of spdl constructions, which are global declarations
or protocol descriptions.

〈spdlcomplete〉 ::= 〈spdl〉 { ’;’ 〈spdl〉 }

〈spdl〉 ::= 〈globaldeclaration〉
| 〈protocol〉

8

5.7.2 Protocols

Note that a protocol is simply a container for a set of roles. Because we use
a role-based approach to describing roles, this affects only the naming of the
roles: a role “I” in a protocol “ns3” will be assigned the global name “ns3.I”.

〈protocol〉 ::= ‘protocol’ 〈id〉 ‘(’ 〈termlist〉 ‘)’ ‘{’ 〈roles〉 ‘}’ [‘;’]

5.7.3 Roles

〈roles〉 ::= 〈role〉 [〈roles〉]
| 〈declaration〉 [〈roles〉]

〈role〉 ::= [‘singular’] ‘role’ 〈id〉 ‘{’ 〈roledef 〉 ‘}’ [‘;’]

〈roledef 〉 ::= 〈event〉 [〈roledef 〉]
| 〈declaration〉 [〈roledef 〉]

5.7.4 Events

〈event〉 ::= ‘read’ 〈label〉 ‘(’ 〈from〉 ‘,’ 〈to〉 ‘,’ 〈termlist〉 ‘)’ ‘;’
| ‘send’ 〈label〉 ‘(’ 〈from〉 ‘,’ 〈to〉 ‘,’ 〈termlist〉 ‘)’ ‘;’
| ‘claim’ [〈label〉] ‘(’ 〈from〉 ‘,’ 〈claim〉 [‘,’ 〈termlist〉] ‘)’ ‘;’

〈label〉 ::= ‘_’ 〈term〉

〈from〉 ::= 〈id〉

〈to〉 ::= 〈id〉

〈claim〉 ::= 〈id〉

5.7.5 Declarations

〈globaldeclaration〉 ::= 〈declaration〉
| ‘untrusted’ 〈termlist〉 ‘;’
| ‘usertype’ 〈termlist〉 ‘;’

〈declaration〉 ::= [‘secret’] ‘const’ 〈termlist〉 [‘:’ 〈type〉] ‘;’
| [‘secret’] ‘var’ 〈termlist〉 [‘:’ 〈typelist〉] ‘;’
| ‘secret’ 〈termlist〉 [〈type〉] ‘;’
| ‘inversekeys’ ‘(’ 〈term〉 ‘,’ 〈term〉 ‘)’ ‘;’
| ‘compromised’ 〈termlist〉 ‘;’

〈type〉 ::= 〈id〉

〈typelist〉 ::= 〈type〉 { ‘,’ 〈type〉 }

9

5.7.6 Terms

〈term〉 ::= 〈id〉
| ‘{’ 〈termlist〉 ‘}’ 〈key〉
| ‘(’ 〈termlist〉 ‘)’
| 〈id〉 ‘(’ 〈termlist〉 ‘)’

〈key〉 ::= 〈term〉

〈termlist〉 ::= 〈term〉 { ‘,’ 〈term〉 }

6 Protocol modeling

The initial step of modeling a protocol typically takes the most time of the ver-
ification process. Most protocols are not very well documented, and because we
work here with abstracted protocols, it is very easy to make a wrong abstraction
in the process and miss out on a crucial feature. Once the protocol is modeled,
the issue of deciding which security properties need to be included is often also
unclear. Secrecy of some terms is fairly straightforward, but informal notions
of authentication are potential minefields, and should be carefully examined.

Once this difficult phase is over, and we are left with a suitable abstracted
protocol, the tools can be used to quickly find attacks on the protocol model.
It is often easy to check whether an attack on the abstract protocol constitutes
an attack on the real protocol.

6.1 Example: Needham-Schroeder Public Key

We discuss now construction of a such protocol model in stages.
In figure 4 the Needham-Schroeder Public Key protocol is shown. For sim-

plicity, we have only displayed the claim by each role that the initiator nonce
ni is secret.

We start off the protocol description by adding a multi-line comment that
describes the protocol and other interesting details. Multi-line comments start
with /* and end with */.

1 /*

2 * Needham-Schroeder protocol

3 */

The protocol assumes a public/private key infrastructure: an agent A has a
key pair (pk(A),sk(A)). We model these as functions: pk and sk are functions
that yield the keys that correspond to an agent. The public key function pk is
known to everybody, and we declare it as a global constant using the keyword
const. Every constant declared in this way is assumed to be public knowledge,
and is automatically added to the initial knowledge of the intruder.

10

pk(R), sk(I)

I

pk(I), sk(R)

R

nonce ni

1
{I, ni}pk(R)

nonce nr

{R, ni, nr}pk(I)
2

3
{nr}pk(R)

i1

secret(ni)

r1

secret(ni)

msc Needham-Schroeder Public Key

Figure 4: A message sequence chart description

There is a corresponding secret key function sk. We declare this using the
keyword secret: this declares sk as a global constant that is not in the initial
intruder knowledge.

Then, we define the mappings of pk and sk to be their inverses, by using the
inversekeys(x,y) construct. When x and y are functions, Scyther automati-
cally assumes their applications are the respective inverses.

5 // PKI infrastructure

6

7 const pk: Function;

8 secret sk: Function;

9 inversekeys (pk,sk);

We have now set up the key infrastructure needed for the protocol. Now we
get to the actual protocol behaviour. The protocol has two roles: the intiator
role I and the responder role R. We also add a single line comment, starting
with //.

11 // The protocol description

12

13 protocol ns3(I,R)

14 {

11

Scyther works with a role-based description of the protocols. We first model
the initiator role. This role has two values that are local to the role: the nonce
that is created by I and the nonce that is received. We have to declare them
both.

15 role I

16 {

17 const ni: Nonce;

18 var nr: Nonce;

We now model the communication behaviour of the protocol. Needham-
Schroeder has three messages, and the initiator role sends the first and last of
these. Note the labels (e.g. 1) at the end of the send and read keywords: these
serve merely to retain the information of the connected arrows in the message
sequence chart.

20 send_1(I,R, {I,ni}pk(R));

21 read_2(R,I, {ni,nr}pk(I));

22 send_3(I,R, {nr}pk(R));

Finally, we add the security requirements of the protocol. Without such
claims, Scyther does not know1 what needs to be checked.

Here we have chosen to check for secrecy of the generated and received nonce,
and will check for non-injective agreement and synchronisation.

24 claim_i1(I,Secret,ni);

25 claim_i2(I,Secret,nr);

26 claim_i3(I,Niagree);

27 claim_i4(I,Nisynch);

28 }

This completes the specification of the initiator role.
For this simple protocol, the responder role is very similar to the initiator

role2. In fact, there are only a few differences:

1. The keywords var and const have swapped places: ni was created by I

and a constant there, but for the role R it is the received value and thus a
variable.

2. The keywords send and read have swapped places.

3. The claims should have unique labels, so they have changed, and the role
executing the claim is now R instead of I.

1If you are unsure about the claims, you can also use the --auto-claims switch to auto-

matically generate these at run-time.
2In general, the transformation is not that simple, but for many protocols this will suffice.

12

The complete role description for the responder looks like this:

30 role R

31 {

32 var ni: Nonce;

33 const nr: Nonce;

34

35 read_1(I,R, {I,ni}pk(R));

36 send_2(R,I, {ni,nr}pk(I));

37 read_3(I,R, {nr}pk(R));

38

39 claim_r1(R,Secret,ni);

40 claim_r2(R,Secret,nr);

41 claim_r3(R,Niagree);

42 claim_r4(R,Nisynch);

43 }

44 }

Finally, in the setting of this protocol we assume there are so-called untrusted
agents. These can be compared to agents that have been compromised by the
intruder. Such an agent has a name, here Eve, and is marked as untrusted,
because the secret key sk(Eve) has been compromised.

46 // An untrusted agent, with leaked information

47

48 const Eve: Agent;

49 untrusted Eve;

50 compromised sk(Eve);

The full protocol description file for the Needham-Schroeder protocol can be
found in Appendix A.

More text will be supplied at a later stage.

7 Scyther output

7.1 Results

As shown before, verifying the Needham-Schroeder public key protocol yields
the following results as in Figure 7.1.

The interpretation is as follows: all the claims of the initiator role ns3,I are
correct for an unbounded number of runs.

Unfortunately, all the claims of the responder role are false. Scyther reports
that it found at least one attack for each of those four claims. We could choose
to view these attacks: this will be shown in Section 7.3.

In the result window, Scyther will output a single line for each claim. The
line is divided into several columns. The first column shows the protocol in

13

Figure 5: Scyther results for the Needham-Schroeder protocol

which the claim occurs, and the second shows the role. In the third column a
unique claim identifier is shown, of the form p,l, where p is the protocol and l

is the claim label.3. The fourth column displays the claim type and the claim
parameter.

Under the header Status we find two columns. The fifth column gives the
actual result of the verification process: it will yield Fail when the claim is
false, and Ok when the claim is correct. The sixth column refines the previ-
ous statement: in some cases, the Scyther verification process is not complete
(which will be explored in more detail in the next section). If this column states
Verified, then the claim is provably true. If the column states Falsified,
then the claim is provably false. If the column is empty, then the statement of
fail/ok depends on the specific bounds setting.

The seventh column, Comments, serves to explain the status of the results
further. In particular, the column contains a single sentences. We describe the
possible results below.

• At least X attack(s)

3This includes the protocol name, which is important when doing multi-protocol analysis.

14

Some attacks were found in the state space: however, due to the undecid-
ability of the problem, or because of the branch and bround structure of
the search, we cannot be sure that there are no other attack states.

In the default setup, Scyther will stop the verification process after an
attack is found.

• Exactly X attack(s)

Within the statespace, there are exactly this many attacks, and no others.

• At least X pattern(s)

• Exactly X pattern(s)

These correspond exactly to the previous two, but occur in case of a
‘Reachable’ claim. Thus, the states that are found are not really attacks
but classes of reachable states.

• No attacks within bounds

No attack was found within the bounded statespace, but there can possibly
be an attack outside the bounded statespace.

• No attacks

No attack was found within the (bounded or unbounded) statespace, and a
proof can be constructed that there is no attack even when the statespace
is unbounded.

Note that because of the nature of the algorithm, this result can even be
obtained when the statespace is bounded.

7.2 Bounding the statespace

During the verification process, the Scyther tool explores a tree of all possible
options. Theoretically, this tree can be infinitely large, and therefore the default
setting is to bound the size tree in some way, ensuring that the verification
procedure terminates.

In most cases, the verification procedure will terminate and return results
before ever reaching the bound. However, if the verification procedure reaches
the bound, this is reported in the result window, e.g.:

No attack within bounds

This should be interpreted as: Scyther did not find any attacks, but because
it reached the bound, it did not explore the full tree, and it is possible that
there are still attacks on the protocol.

The default way of bounding the maximum number of runs, or protocol
instances. This can be changed in the Settings tab of the main window. If
the maximum number of runs is e.g. 5, and Scyther reports No attack within

15

bounds, this means that there exist no attacks that involve 5 runs or less.
However, there might exist attacks that involve 6 runs or more.

For some protocols, increasing the maximum number of runs can lead to
complete results (i.e. finding an attack or being sure that there is no attack),
but for other protocols the result will always be No attack within bounds.

Note that the verification time usually grows exponentially with respect to
the maximum number of runs.

7.3 Attack graphs

In Figure 7.3 we show an attack window in more detail.
The basic elements are arrows and several kinds of boxes. The arrows in the

graph represent ordering constraints (caused by the prefix-closedness of events
in the protocol roles, or by dependencies in the intruder knowledge). The boxes
represent creation of a run, communication events of a run, and claim events.

7.3.1 Runs

Each vertical axis represents a run (an instance of a protocol role). Thus, in
this attack we see that there are two runs involved. Each run starts with a
diamond shaped box. This represents the creation of a run, and is used to give
information about the run.

For the run on the left-hand side in the attack we have this information:

Run #1

Agent2 in role I

I -> Agent2

R -> Agent1

Each run is assigned a run identifier (here 1), which is an arbitrary number
that enables us to uniquely identify each run. This run executes the R role of
the protocol. It is being executed by an agent called Agent1, who thinks he is
talking to Agent2. Note that although run 2 is being executed by Agent2, this
agent does not believe he is talking to Agent1.

Run #2

Agent2 in role I

I -> Agent2

R -> Eve

In the run on the right, we see This run represents an instance of the role I.
From the second line we can see which agent is executing the run, and who he
thinks he is talking to. In this example, the run is executed by an agent called
Agent2, who thinks the responder role is being executed by the untrusted agent
Eve.4

4Because this agent is talking to the untrusted agent, of course all information is leaked,

and no guarantees can be given.

16

Figure 6: Scyther attack window

17

Additionally, the run headers contain information on the locally created
constants (e.g. run 1 creates nr#1) and information on the instantiation of the
local variables (e.g. run 1 instantiates its variable ni with the nonce ni#2 or
run 2.

7.3.2 Communication events

Send events denote the sending of a message. The first send that can occur in
this attack is the first send event of run 2.

SEND_1(Eve, { Agent#0, ni#2 }pk(Eve))

Every time a message is sent, it is effectively given to the intruder. In this
case, because the intruder knows the secret key sk(Eve) of the agent Eve, he
can decrypt the message and learns the value of the nonce ni#2.

Read events denote the reading of a message. The first read that can occur
in this attack is the first read event of run 0.

READ_1(Agent#0, { Agent#0, ni#2 }pk(Agent#1))

This tells us that the agent executing this run, Agent#1, reads a message that
is apparently coming from Agent#1. The message that is read is { Agent#0,

ni#2 }pk(Agent#1) : the name of the agent he thinks he is communicating
with and the nonce ni#2, encrypted with his public key.

The incoming arrow does not indicate a direct sending of the message.
Rather, it denotes an ordering constraint: this message can only be read af-

ter something else has happened. In this case, we see that the message can only
be read after run 2 sends his initial message. The reason for this is the nonce
ni#2: the intruder cannot predict this nonce, and thus has to wait until run 2
has generated it.

In the graph the connecting arrow is red and has a label “construct” with
it: this is caused by the fact that the message sent does not correspond to the
message that is read. We know the intruder can only construct the message
to be read after the sent message, and thus it must be the case that he uses
information from the sent message to construct the message that is read. Other
possibilities include a green and a yellow arrow. A yellow arrow indicates that
a message was sent, and read in exactly the same form: however, the agents
disagree about who was sending a message to whom. It is therefore labeled
with “redirect” because the intruder must have redirected the message. A green
arrow (not in the picture) indicating that a message is read exactly the same as
it was sent, representing a normal message communication between two agents.

Note that a read event without an incoming arrow denotes that a term is
read that can be generated from the initial knowledge of the intruder. There is
no such event in the example, but this can occur often. For example, if a role
reads a plain message containing only an agent name, the intruder can generate
the term from his initial knowledge.

18

7.3.3 Claims

8 Advanced topics

References

[1] C.J.F. Cremers. Scyther - Semantics and Verification of Security Protocols.
Ph.D. dissertation, Eindhoven University of Technology, 2006.

[2] C.J.F. Cremers and S. Mauw. Operational semantics of security protocols.
In S. Leue and T. Systä, editors, Scenarios: Models, Transformations and

Tools, International Workshop, Dagstuhl Castle, Germany, September 7-12,

2003, Revised Selected Papers, volume 3466 of LNCS. Springer, 2005.

[3] C.J.F. Cremers, S. Mauw, and E.P. de Vink. Formal methods for security
protocols: Three examples of the black-box approach. NVTI newsletter,
7:21–32, 2003. Newsletter of the Dutch Association for Theoretical Com-
puting Scientists.

[4] C.J.F. Cremers, S. Mauw, and E.P. de Vink. Defining authentication in a
trace model. In T. Dimitrakos and F. Martinelli, editors, Proc. FAST 2003,
pages 131–145, Pisa, 2003. IITT-CNR technical report.

[5] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In T. Margaria and B. Steffen, editors, Proc. TACAS ’96, pages
147–166. LNCS 1055, 1996.

A Full specification for Needham-Schroeder pub-

lic key

1 /*

2 * Needham-Schroeder protocol

3 */

4

5 // PKI infrastructure

6

7 const pk: Function;

8 secret sk: Function;

9 inversekeys (pk,sk);

10

11 // The protocol description

12

13 protocol ns3(I,R)

14 {

15 role I

16 {

19

17 const ni: Nonce;

18 var nr: Nonce;

19

20 send_1(I,R, {I,ni}pk(R));

21 read_2(R,I, {ni,nr}pk(I));

22 send_3(I,R, {nr}pk(R));

23

24 claim_i1(I,Secret,ni);

25 claim_i2(I,Secret,nr);

26 claim_i3(I,Niagree);

27 claim_i4(I,Nisynch);

28 }

29

30 role R

31 {

32 var ni: Nonce;

33 const nr: Nonce;

34

35 read_1(I,R, {I,ni}pk(R));

36 send_2(R,I, {ni,nr}pk(I));

37 read_3(I,R, {nr}pk(R));

38

39 claim_r1(R,Secret,ni);

40 claim_r2(R,Secret,nr);

41 claim_r3(R,Niagree);

42 claim_r4(R,Nisynch);

43 }

44 }

45

46 // An untrusted agent, with leaked information

47

48 const Eve: Agent;

49 untrusted Eve;

50 compromised sk(Eve);

20

