
Computer Security

Introduction. Access control

Marius Minea

September 29, 2016



What is this course about ?

Security of systems
operating system + applications
network security

Secure Programming
vulnerabilities and their prevention
security of web applications

Cryptography
foundational for all of security

Security protocols and their modeling
authentication, key generation/exchange, etc.
principles and tools for modeling and analysis



What is this course about ?

Security of systems
operating system + applications
network security

Secure Programming
vulnerabilities and their prevention
security of web applications

Cryptography
foundational for all of security

Security protocols and their modeling
authentication, key generation/exchange, etc.
principles and tools for modeling and analysis



What is this course about ?

Security of systems
operating system + applications
network security

Secure Programming
vulnerabilities and their prevention
security of web applications

Cryptography
foundational for all of security

Security protocols and their modeling
authentication, key generation/exchange, etc.
principles and tools for modeling and analysis



What is this course about ?

Security of systems
operating system + applications
network security

Secure Programming
vulnerabilities and their prevention
security of web applications

Cryptography
foundational for all of security

Security protocols and their modeling
authentication, key generation/exchange, etc.
principles and tools for modeling and analysis



What is security?

“Security is [...] preventing adverse consequences from the intentional
and unwarranted actions of others” [Bruce Schneier, Beyond Fear]

“Computer Security deals with the prevention and detection of
unauthorized actions by users of a computer system” [D. Gollmann]

A security system prevents attacks
possibly: detection, recovery, repair

Security deals with intentional actions
incidental actions: safety (6= security !)

unauthorized actions (from victim point of view); need not be illegal

Implies the existence of an attacker, targeting assets
thinking of/modeling attacker capabilities is essential
incl. multiple, colluding attackers



What is security?

“Security is [...] preventing adverse consequences from the intentional
and unwarranted actions of others” [Bruce Schneier, Beyond Fear]

“Computer Security deals with the prevention and detection of
unauthorized actions by users of a computer system” [D. Gollmann]

A security system prevents attacks
possibly: detection, recovery, repair

Security deals with intentional actions
incidental actions: safety (6= security !)

unauthorized actions (from victim point of view); need not be illegal

Implies the existence of an attacker, targeting assets
thinking of/modeling attacker capabilities is essential
incl. multiple, colluding attackers



What is security?

“Security is [...] preventing adverse consequences from the intentional
and unwarranted actions of others” [Bruce Schneier, Beyond Fear]

“Computer Security deals with the prevention and detection of
unauthorized actions by users of a computer system” [D. Gollmann]

A security system prevents attacks
possibly: detection, recovery, repair

Security deals with intentional actions
incidental actions: safety (6= security !)

unauthorized actions (from victim point of view); need not be illegal

Implies the existence of an attacker, targeting assets
thinking of/modeling attacker capabilities is essential
incl. multiple, colluding attackers



What is security?

“Security is [...] preventing adverse consequences from the intentional
and unwarranted actions of others” [Bruce Schneier, Beyond Fear]

“Computer Security deals with the prevention and detection of
unauthorized actions by users of a computer system” [D. Gollmann]

A security system prevents attacks
possibly: detection, recovery, repair

Security deals with intentional actions
incidental actions: safety (6= security !)

unauthorized actions (from victim point of view); need not be illegal

Implies the existence of an attacker, targeting assets
thinking of/modeling attacker capabilities is essential
incl. multiple, colluding attackers



What is security?

“Security is [...] preventing adverse consequences from the intentional
and unwarranted actions of others” [Bruce Schneier, Beyond Fear]

“Computer Security deals with the prevention and detection of
unauthorized actions by users of a computer system” [D. Gollmann]

A security system prevents attacks
possibly: detection, recovery, repair

Security deals with intentional actions
incidental actions: safety (6= security !)

unauthorized actions (from victim point of view); need not be illegal

Implies the existence of an attacker, targeting assets
thinking of/modeling attacker capabilities is essential
incl. multiple, colluding attackers



How to achieve security?

By knowing
tehnical details (operating systems, networks, programming, crypto)

By thinking
security mindset [v. Schneier]
like an attacker (technical and social aspects)

social engineering: e.g., impersonate maintenance to get access

By understanding:
fundamental notions: what needs protected? how? from what attacks?
principles (design/construction): general, not necessarily technical



How to achieve security?

By knowing
tehnical details (operating systems, networks, programming, crypto)

By thinking
security mindset [v. Schneier]
like an attacker (technical and social aspects)

social engineering: e.g., impersonate maintenance to get access

By understanding:
fundamental notions: what needs protected? how? from what attacks?
principles (design/construction): general, not necessarily technical



How to achieve security?

By knowing
tehnical details (operating systems, networks, programming, crypto)

By thinking
security mindset [v. Schneier]
like an attacker (technical and social aspects)

social engineering: e.g., impersonate maintenance to get access

By understanding:
fundamental notions: what needs protected? how? from what attacks?
principles (design/construction): general, not necessarily technical



How to evaluate security?

[ B. Schneier, Beyond Fear ]

1. What assets are you trying to protect?

2. What are the risks to those assets?

3. How well does the solution mitigate those risks?

4. What other risks does the solution cause?

5. What costs and compromises does the solution impose?



Security Objectives

Confidentiality
– protecting / hiding information or resources
– typically done through cryptography

– or other undisclosed mechanisms
– not just contents, even existence may be confidential

(cf. steganography)
– includes hiding the resources

Integrity

Availability



Security Objectives

Confidentiality

Integrity
= trust in data or resources
– expressed by preventing unauthorized modifications
We distinguish:

– data integrity (of content)
– data origin authentication

Integrity mechanisms
– prevention mechanisms

of unauthorized data manipulation (e.g. from outside)
of data manipulation in unauthorized ways (e.g. from inside)

– detection mechanisms
[M. Bishop: Computer Security: Art and Science, Pearson, 2003]

Availability



Security Objectives

Confidentiality

Integrity

Availability
= the ability of using information or a resource in the desired way

A system which is not available can be worse than one nonexistent.

Availability is usually analyzed in the context of some (statistical)
assumptions about the environment

if the assumptions are not satisfied, the system may be compromised

denial of service attacks – may be difficult to detect if the traffic
(partially) matches the allowed statistic pattern



Security objectives – other classifications

Privacy, Availability-Authentication, Integrity, Non-repudiation

Parkerian Hexad (Donn Parker, 2002)

confidentiality
posession/control (important even without violating confidentiality)
integrity
authenticity (of origin or author)
availability
utility (ex. data converted to useless format 6= disponibilitate)



Other security objectives

[Handbook of Applied Cryptography]

signature
authorization
access control
timestamping
witnessing (by someone other than originator)
confirmation
anonymity
revocation
traceability / accountability



Security Threats

Confidentiality, integrity, availability are services offered

We discuss (potential) threats and (real) attacks to those services

Threat classification [R. Shirey, cf. M. Bishop]
– disclosure
– deception (forcing acceptance of false data)
– disruption = interrupting / stopping normal service
– usurpation = unauthorized control of part of a system



Threat mechanisms

Microsoft STRIDE threat model

Spoofing identity - impersonating

Tampering with data - falsifying / attack on integrity

Repudiation - negating the effect of an action

Information disclosure - attack to confidentiality

Denial of service - attack to availability

Elevation of privilege - unauthorized additional rights



Threat Mechanisms

interception (snooping)
in particular: (passive) wiretapping

modifying / altering data ⇒ deception
also interruption / usurpation (gaining control)
active wiretapping, man-in-the-middle attack
(actively changing content)

impersonation (masquerading, spoofing)
repudiation of origin (e.g. in commercial transactions)
denial of receipt – a form of deception
delay – could be service interruption, also usurpation
denial of service



Secure design principles
Saltzer & Schroeder: The Protection of Information in Computer Systems, 1975

a) Economy of mechanism: keep the design as simple and small as
possible
⇒ security by design, not as an afterthought

b) Fail-safe defaults: base access decisions based on permission rather
than exclusion (default deny)

c) Complete mediation: check every access, every time
(including in exceptional cases, maintenance.)

NOT based on previously taken decisions

d) Open design: (NOT: security through obscurity)
⇒ mechanisms may be publicly checked to gain trust



Secure design principles
Saltzer & Schroeder: The Protection of Information in Computer Systems, 1975

a) Economy of mechanism: keep the design as simple and small as
possible
⇒ security by design, not as an afterthought

b) Fail-safe defaults: base access decisions based on permission rather
than exclusion (default deny)

c) Complete mediation: check every access, every time
(including in exceptional cases, maintenance.)

NOT based on previously taken decisions

d) Open design: (NOT: security through obscurity)
⇒ mechanisms may be publicly checked to gain trust



Secure design principles
Saltzer & Schroeder: The Protection of Information in Computer Systems, 1975

a) Economy of mechanism: keep the design as simple and small as
possible
⇒ security by design, not as an afterthought

b) Fail-safe defaults: base access decisions based on permission rather
than exclusion (default deny)

c) Complete mediation: check every access, every time
(including in exceptional cases, maintenance.)

NOT based on previously taken decisions

d) Open design: (NOT: security through obscurity)
⇒ mechanisms may be publicly checked to gain trust



Secure design principles
Saltzer & Schroeder: The Protection of Information in Computer Systems, 1975

a) Economy of mechanism: keep the design as simple and small as
possible
⇒ security by design, not as an afterthought

b) Fail-safe defaults: base access decisions based on permission rather
than exclusion (default deny)

c) Complete mediation: check every access, every time
(including in exceptional cases, maintenance.)

NOT based on previously taken decisions

d) Open design: (NOT: security through obscurity)
⇒ mechanisms may be publicly checked to gain trust



Saltzer and Schroeder (cont.)

e) Separation of privilege: separation increases robustness

f) Least privilege: every program and user should operate with the
minimal set of privileges needed for the given task

g) Least common mechanism: minimize common resources, interference
among users, the mechanisms on which everything is based

h) Psychological acceptability:
not unduly interfere with common activity
if mechanisms are not simple, they will be misused or bypassed

2 additional ones:
Work factor: compare needed effort with attacker resources
Compromise recording: in case of failure, an alarm still useful



Saltzer and Schroeder (cont.)

e) Separation of privilege: separation increases robustness

f) Least privilege: every program and user should operate with the
minimal set of privileges needed for the given task

g) Least common mechanism: minimize common resources, interference
among users, the mechanisms on which everything is based

h) Psychological acceptability:
not unduly interfere with common activity
if mechanisms are not simple, they will be misused or bypassed

2 additional ones:
Work factor: compare needed effort with attacker resources
Compromise recording: in case of failure, an alarm still useful



Saltzer and Schroeder (cont.)

e) Separation of privilege: separation increases robustness

f) Least privilege: every program and user should operate with the
minimal set of privileges needed for the given task

g) Least common mechanism: minimize common resources, interference
among users, the mechanisms on which everything is based

h) Psychological acceptability:
not unduly interfere with common activity
if mechanisms are not simple, they will be misused or bypassed

2 additional ones:
Work factor: compare needed effort with attacker resources
Compromise recording: in case of failure, an alarm still useful



Saltzer and Schroeder (cont.)

e) Separation of privilege: separation increases robustness

f) Least privilege: every program and user should operate with the
minimal set of privileges needed for the given task

g) Least common mechanism: minimize common resources, interference
among users, the mechanisms on which everything is based

h) Psychological acceptability:
not unduly interfere with common activity
if mechanisms are not simple, they will be misused or bypassed

2 additional ones:
Work factor: compare needed effort with attacker resources
Compromise recording: in case of failure, an alarm still useful



Saltzer and Schroeder (cont.)

e) Separation of privilege: separation increases robustness

f) Least privilege: every program and user should operate with the
minimal set of privileges needed for the given task

g) Least common mechanism: minimize common resources, interference
among users, the mechanisms on which everything is based

h) Psychological acceptability:
not unduly interfere with common activity
if mechanisms are not simple, they will be misused or bypassed

2 additional ones:
Work factor: compare needed effort with attacker resources
Compromise recording: in case of failure, an alarm still useful



Security principles (cont.)

weakest link determines security of entire system

adequate protection principle
not maximal security, but utility at acceptable risk/cost

principle of efficiency (cf. acceptability)
appropriate, easy to use correctly

defense in depth: layered protection

[Ninghui Li, CS 426: Computer Security, course, Purdue University]



Attack Actions

– “probe”: acces a target to determine characteristics
– “scan”: sytematically access (probe) several targets
– “flood”: repeated access to a target to overload it
– authentication: present an identity for verification and ulterior access
– bypass: circumvent a control/authorization process using an alternate
method to access a target
– spoof/masquerade: assume some other identity
– read
– copy
– steal (take into posession and eliminate the original)
– modify
– delete



Result of an attack

unauthorized (increased) access to a system or network

information disclosure (attack to confidentiality)

information corruption (atac la integritate)

denial of service (attack to availability)

theft of resources (unauthorized use): a type of usurping resource



Security: general problems [Schneier]

error modes: passive vs. active (does not vs. does what it shoudln’t)

danger of errors in rare cases

security imbalances – effect of large-scale technologies

fragile (brittle) systems vs. resilient to errors

protection methods: adaptive to unforeseen situations

monocultures (homogeneous systems) – vulnerable to same attack
e.g. majority of systems is running Windows...

security is a human & social problem



Security and Trust

In security, we make assertions (statements) of various entities

These statements are not absolute, they are based on assumptions.

⇒ Security is a matter of trust: in whom/what can we trust?

Ken Thompson: Reflections on Trusting Trust (Turing Award Lecture ’83)

inserted a trojan into the login program and C compiler
to accept a special password (known by originator)

by using self-reproducing code

“You can’t trust code that you did not create yourself”

“No amount of source-level verification or scrutiny will prevent you from
using untrusted code”



Example: file protection in Unix (review)

every file is owned by a user and group

individual permission bits: read, write, execute/search

3 groups of bits for: user, group, others

Meaning for directories is more complex than for files:

r is needed for read(), readdir(), opendir() ⇒ for ls

x (“search”) is needed for chdir() and stat() (any file)



Unix file permission examples
What permissions are needed to read a file ?

x on the entire path and r for the file

What permissions are needed for ls -l name?
needs info from inode, thus x on the parent directory

(also, x on the path); independent of permissions on name.
if name is a directory, ls -l lists contents (needs r)

ls -ld only gives directory info, so answer is as above

What permissions are needed to delete a file ?
w in parent directory, as well as x

Need not have w for the file!

What can you do with x on directory but not r ?
You can access a file with known name, but can’t search for a file

(e.g. search for file on a web server)

Special bits:
– sticky bit: for directory: file can only be deleted by owner
– set user ID: execute with effective ID of file owner
– set group ID: execute with effective ID of file group



Unix file permission examples
What permissions are needed to read a file ?

x on the entire path and r for the file

What permissions are needed for ls -l name?
needs info from inode, thus x on the parent directory

(also, x on the path); independent of permissions on name.
if name is a directory, ls -l lists contents (needs r)

ls -ld only gives directory info, so answer is as above

What permissions are needed to delete a file ?
w in parent directory, as well as x

Need not have w for the file!

What can you do with x on directory but not r ?
You can access a file with known name, but can’t search for a file

(e.g. search for file on a web server)

Special bits:
– sticky bit: for directory: file can only be deleted by owner
– set user ID: execute with effective ID of file owner
– set group ID: execute with effective ID of file group



Unix file permission examples
What permissions are needed to read a file ?

x on the entire path and r for the file

What permissions are needed for ls -l name?

needs info from inode, thus x on the parent directory
(also, x on the path); independent of permissions on name.

if name is a directory, ls -l lists contents (needs r)
ls -ld only gives directory info, so answer is as above

What permissions are needed to delete a file ?
w in parent directory, as well as x

Need not have w for the file!

What can you do with x on directory but not r ?
You can access a file with known name, but can’t search for a file

(e.g. search for file on a web server)

Special bits:
– sticky bit: for directory: file can only be deleted by owner
– set user ID: execute with effective ID of file owner
– set group ID: execute with effective ID of file group



Unix file permission examples
What permissions are needed to read a file ?

x on the entire path and r for the file

What permissions are needed for ls -l name?
needs info from inode, thus x on the parent directory

(also, x on the path); independent of permissions on name.
if name is a directory, ls -l lists contents (needs r)

ls -ld only gives directory info, so answer is as above

What permissions are needed to delete a file ?
w in parent directory, as well as x

Need not have w for the file!

What can you do with x on directory but not r ?
You can access a file with known name, but can’t search for a file

(e.g. search for file on a web server)

Special bits:
– sticky bit: for directory: file can only be deleted by owner
– set user ID: execute with effective ID of file owner
– set group ID: execute with effective ID of file group



Unix file permission examples
What permissions are needed to read a file ?

x on the entire path and r for the file

What permissions are needed for ls -l name?
needs info from inode, thus x on the parent directory

(also, x on the path); independent of permissions on name.
if name is a directory, ls -l lists contents (needs r)

ls -ld only gives directory info, so answer is as above

What permissions are needed to delete a file ?

w in parent directory, as well as x

Need not have w for the file!

What can you do with x on directory but not r ?
You can access a file with known name, but can’t search for a file

(e.g. search for file on a web server)

Special bits:
– sticky bit: for directory: file can only be deleted by owner
– set user ID: execute with effective ID of file owner
– set group ID: execute with effective ID of file group



Unix file permission examples
What permissions are needed to read a file ?

x on the entire path and r for the file

What permissions are needed for ls -l name?
needs info from inode, thus x on the parent directory

(also, x on the path); independent of permissions on name.
if name is a directory, ls -l lists contents (needs r)

ls -ld only gives directory info, so answer is as above

What permissions are needed to delete a file ?
w in parent directory, as well as x

Need not have w for the file!

What can you do with x on directory but not r ?
You can access a file with known name, but can’t search for a file

(e.g. search for file on a web server)

Special bits:
– sticky bit: for directory: file can only be deleted by owner
– set user ID: execute with effective ID of file owner
– set group ID: execute with effective ID of file group



Unix file permission examples
What permissions are needed to read a file ?

x on the entire path and r for the file

What permissions are needed for ls -l name?
needs info from inode, thus x on the parent directory

(also, x on the path); independent of permissions on name.
if name is a directory, ls -l lists contents (needs r)

ls -ld only gives directory info, so answer is as above

What permissions are needed to delete a file ?
w in parent directory, as well as x

Need not have w for the file!

What can you do with x on directory but not r ?

You can access a file with known name, but can’t search for a file
(e.g. search for file on a web server)

Special bits:
– sticky bit: for directory: file can only be deleted by owner
– set user ID: execute with effective ID of file owner
– set group ID: execute with effective ID of file group



Unix file permission examples
What permissions are needed to read a file ?

x on the entire path and r for the file

What permissions are needed for ls -l name?
needs info from inode, thus x on the parent directory

(also, x on the path); independent of permissions on name.
if name is a directory, ls -l lists contents (needs r)

ls -ld only gives directory info, so answer is as above

What permissions are needed to delete a file ?
w in parent directory, as well as x

Need not have w for the file!

What can you do with x on directory but not r ?
You can access a file with known name, but can’t search for a file

(e.g. search for file on a web server)

Special bits:
– sticky bit: for directory: file can only be deleted by owner
– set user ID: execute with effective ID of file owner
– set group ID: execute with effective ID of file group



Unix file permission examples
What permissions are needed to read a file ?

x on the entire path and r for the file

What permissions are needed for ls -l name?
needs info from inode, thus x on the parent directory

(also, x on the path); independent of permissions on name.
if name is a directory, ls -l lists contents (needs r)

ls -ld only gives directory info, so answer is as above

What permissions are needed to delete a file ?
w in parent directory, as well as x

Need not have w for the file!

What can you do with x on directory but not r ?
You can access a file with known name, but can’t search for a file

(e.g. search for file on a web server)

Special bits:
– sticky bit: for directory: file can only be deleted by owner
– set user ID: execute with effective ID of file owner
– set group ID: execute with effective ID of file group



Access control



Policy and mechanism

A security policy is a statement of what is, and what is not, allowed.

A security mechanism is a method, tool or procedure for enforcing a
security policy.

Bishop, Computer Security: Art and Science

⇒ we need to check if the mechanism is correct

A mechanism may be:
– safe (does not allow states disallowed by the policy)
– precise (allows exactly what the policy specifies)
– broad (allows more than the policy does)



Access control

a mechanism to allow or deny an entity’s access to a resource

“principal”/subject → request → guard/monitor → object

Access control consists of two steps:
authentication: Who made the access request ?
authorization: Does subject s have access rights for resource o ?



Formalizing access control

We distinguish:
– a set of subjects or principals S
– a set of objects O
– a set of access modes A.

Simplest: A = {observe, alter}. Usually not enough.

The Bell-LaPadula model refines this to:
A = {execute, read , append ,write}.

When are distinctions between these modes useful ?

log: append, without changing prior contents
execute encryption, without knowing the key



Formalizing access control

We distinguish:
– a set of subjects or principals S
– a set of objects O
– a set of access modes A.

Simplest: A = {observe, alter}. Usually not enough.

The Bell-LaPadula model refines this to:
A = {execute, read , append ,write}.

When are distinctions between these modes useful ?
log: append, without changing prior contents
execute encryption, without knowing the key



Semantics of process UIDs in Unix

A process has (in most newer versions) three user-related identifiers:
– real user ID: (initial) owner of the process
– effective user ID: determines access rights
– saved user ID: used to revert to a previous UID

Normally: ruid = euid = user launching the process

Exception: euid = owner of the loaded executable, when it has the s
(setuid) bit set ⇒ running with other privileges (e.g. elevated)

(similar for group identifiers)

Q1: Why do we need functions to manipulate UIDs at runtime?

Q2: Why is saving the old UID not left to the programmer ?



Semantics of process UIDs in Unix

A process has (in most newer versions) three user-related identifiers:
– real user ID: (initial) owner of the process
– effective user ID: determines access rights
– saved user ID: used to revert to a previous UID

Normally: ruid = euid = user launching the process

Exception: euid = owner of the loaded executable, when it has the s
(setuid) bit set ⇒ running with other privileges (e.g. elevated)

(similar for group identifiers)

Q1: Why do we need functions to manipulate UIDs at runtime?

Q2: Why is saving the old UID not left to the programmer ?



The setuid / seteiud

calls setuid(val)

– if euid = 0 (root), set ruid=euid=val (and saved uid too)
⇒ UIDs / privileges are irreversibly set

– else (euid 6= 0): can only set euid = val if val is real or saved uid
ruid and saved uid unchanged

Q3: what are the limitations if only this call exists?

seteuid(val)

allowed only if euid == 0

or if val is one of the three values (euid/ruid/saved)
sets only euid, does not change ruid and saved uid.
⇒ changes are reversible by another seteuid call



The setuid / seteiud

calls setuid(val)

– if euid = 0 (root), set ruid=euid=val (and saved uid too)
⇒ UIDs / privileges are irreversibly set

– else (euid 6= 0): can only set euid = val if val is real or saved uid
ruid and saved uid unchanged

Q3: what are the limitations if only this call exists?

seteuid(val)

allowed only if euid == 0

or if val is one of the three values (euid/ruid/saved)
sets only euid, does not change ruid and saved uid.
⇒ changes are reversible by another seteuid call


