
Formal Methods in System Design, 21, 251–280, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Combining Software and Hardware
Verification Techniques

ROBERT P. KURSHAN k@research.bell-labs.com
VLADIMIR LEVIN levin@research.bell-labs.com
Lucent Technologies, Bell Laboratories, Murray Hill, NJ 07974, USA

MARIUS MINEA marius+@cs.cmu.edu
Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

DORON PELED doron@research.bell-labs.com
HÜSNÜ YENIGÜN husnu@research.bell-labs.com
Lucent Technologies, Bell Laboratories, Murray Hill, NJ 07974, USA

Received June 6, 2000; Accepted December 3, 2001

Abstract. Combining verification methods developed separately for software and hardware is motivated by the
industry’s need for a technology that would make formal verification of realistic software/hardware co-designs
practical. We focus on techniques that have proved successful in each of the two domains: BDD-based symbolic
model checking for hardware verification and partial order reduction for the verification of concurrent software
programs. In this paper, we first suggest a modification of partial order reduction, allowing its combination with any
BDD-based verification tool, and then describe a co-verification methodology developed using these techniques
jointly. Our experimental results demonstrate the efficiency of this combined verification technique, and suggest
that for moderate–size systems the method is ready for industrial application.

Keywords: formal verification, model checking, hardware/software co-design, partial order reduction

1. Introduction

Software and hardware verification, although having a lot in common, have developed
along different paths. Even in the specific context of model checking, in which the system
is represented as a graph or an automaton, several differences become apparent. Software
systems typically use an asynchronous model of execution, in which concurrent actions
of component modules are interleaved. In verification, the asynchrony is exploited using
partial order reduction [8, 21, 26], which explores during verification only a subset of the
available actions from each state. The remaining actions are delayed to a subsequent step,
as long as this does not result in any change visible to the specification being checked.

On the other hand, hardware is typically designed for synchronous execution. All com-
ponent modules perform an action at each execution step. Hardware verification usually
exploits the regularity of digital circuits, often built from many identical units, by represent-
ing the state space using binary decision diagrams (BDDs) [20]. Another technique which

252 KURSHAN ET AL.

makes hardware verification manageable is localization reduction [14] which abstracts away
the hardware design parts which are irrelevant to the verified property.

Thus, traditionally, formal verification of hardware and software is done through differ-
ent techniques, using tools which are based on different algorithms, representations and
principles.

However, there are important and growing classes of mixed (combined) hardware-
software systems, co-designs, in which hardware and software are tightly coupled. The
tight coupling precludes testing the hardware and software separately. On the other hand,
there may be 100 hardware steps for one software step. The difference renders conven-
tional simulation test exceedingly inefficient, and results in co-design systems that cannot
be effectively tested by conventional means. New testing methods and commercial tools to
support them have emerged to address this problem. For example, we refer the reader to
websites of major EDA vendors,1 where co-verification (as a matter of fact, co-simulation)
tools are more and more heavely promoted: there are too many of them to mention here.
They generally involve ad hoc abstraction of the hardware (such as removing clock depen-
dencies), in order to speed up the simulation of the hardware relative to the software. These
methods may result both in missed design errors, and false error indications that reflect
errors in the abstraction, not the design. Nonetheless, the design community is forced into
these new methods as the only available alternative.

Yet, there is another alternative, based on model checking. Formal verification in this
context has all the well-known advantages over simulation test: better coverage, and it
may be applied sooner in the design cycle. It also is able to deal in a sound fashion
with the interface between hardware and software, in particular, with different speed
rates on the two sides. This motivates our efforts to introduce formal verification into
the area of co-design systems. For this, an efficient verification technique is needed that
is able to address co-design systems containing both kinds of components, hardware and
software.

In this paper, we attempt to combine the benefits of both methodologies: we suggest
a verification technique that combines partial order reduction with a BDD representation
and, in general, hardware verification techniques. The partial order reduction principle of
selecting a subset of the enabled actions from each state poses no problem when combining
it with BDDs or localization reduction. It only means that the transition relation needs to
be restricted so that it takes advantage of the potential commutativity between concurrent
actions. The idea that this can be done statically, at compile time, was suggested by [12], but
their implementation required some changes in the depth-first search algorithm (in order to
control the backtracking mechanism) of the Spin model checker [11].

The subtle point that has so far made explicit state enumeration seem more appropriate
than BDD-based symbolic exploration for implementing the partial order reduction algo-
rithm is the cycle closing problem. Since partial order reduction may defer an action in
favor of another one that can be executed concurrently, one needs to ensure that no action
is ignored indefinitely along a cycle in the state space. One solution to this problem was
proposed by [3] and elaborated by [1] in the first attempt at combining partial order reduc-
tion with BDDs. Their solution is based on a conservative approximation of when a cycle
may be closed during a breadth-first search. Essentially, when an edge connects a node to

COMBINING SOFTWARE AND HARDWARE VERIFICATION TECHNIQUES 253

another node that is at the same or a lower level in the breadth-first search, it is assumed
(conservatively) to close a cycle.

We propose an alternative solution [15] that computes at compile time the conditions
which guarantee that no action is ignored. The method is based on the observation that any
cycle in the global state space projects to a local cycle in each participating process. These
local cycles can be detected at compile time. An action from each cycle is selected, such
that at run time, the execution of each selected action forces a complete exploration of all
actions that have been deferred so far in favor of other actions. The number of these special
actions (the more of which there are, the less the achieved reduction) can be minimized by
analyzing the effects of transitions.

Our implementation of the algorithm has the unique feature that all the information
needed for performing the partial order reduction is obtained during a compilation of the
software system model. There is no change at all in the verification tool, in this case the
model checker COSPAN [9, 10]. Thus, with the new algorithm, partial order reduction is
implemented as a compilation or preprocessing phase for model checking, rather than as
a modified model checking algorithm. It is precisely this feature that allows a combina-
tion of the partial order reduction with BDD-based algorithms and, in general, with any
optimization technique applied by the model checker.

Can we gain by combining software- and hardware-oriented verification techniques,
partial order reduction and BDDs? We answer this question affirmatively: the combination
of partial order reduction and hardware-oriented verification techniques makes possible
hardware/software co-verification, i.e., the integral verification of a hardware/software co-
design. In particular, there are examples in this area for which the use of a single method
(be it BDDs or partial order reduction) terminates in lack of memory due to state space
explosion, whereas the combination of the two methods makes verification possible (see
Section 5).

The remainder of the paper is organized as follows. The next section explains the modifi-
cation of partial order reduction aimed at its combination with any existing model checker,
in particular, with one based on BDDs. Section 3 presents a co-verification methodology that
makes use of the combination of partial order reduction with hardware-oriented verification
techniques. Section 4 describes our current implementation of this co-verification tech-
nique with an emphasis on modifying the transition relation according to the partial order
reduction constraints. Section 5 presents experimental results and Section 6 the conclusion.

2. Partial order reduction

In Sections 2.1 and 2.2, we present the basics of the temporal logic LTL [7] and of the
partial order reduction technique. Sections 2.3 and 2.4 describe the modification to partial
order reduction required to fit our needs.

2.1. Preliminaries

The system to be analyzed is viewed as a state graph. If S is the set of states, a transition is
a relation α ⊆ S × S. A state graph is defined as a tuple M = (S, S0, T, L), where S0 ⊆ S

254 KURSHAN ET AL.

is the set of initial states and T is the set of transitions. The labeling function L : S → 2AP

associates each state of M with a set of atomic propositions that hold at s.
A transition α ∈ T is enabled at state s ∈ S if there exists a state s ′ ∈ S such that (s, s ′) ∈ α.

Otherwise α is said to be disabled at s. For a state s, enabled(s) is the set of all transitions α

such that α is enabled at s. A transition α is called deterministic if for any state s ∈ S in which
α is enabled there is a unique s ′ such that (s, s ′) ∈ α. In this case α can be viewed as a partial
function on S, and the notation s ′ = α(s) can be used instead of (s, s ′) ∈ α. In this paper, we
restrict ourselves to state graphs with only deterministic transitions. Yet, nondeterminism
may appear as a nondeterministic selection among several enabled transitions.

In order to simplify the picture, we avoid states from which no transition is possible,
and therefore, for such (i.e. deadlocked) states, force T to have the self-looping transition
δ = {(s, s) | s has no successors except s}.

An execution sequence σ of a state graph M is an infinite alternating sequence of states
si and transitions αi : σ = s0

α0→ s1
α1→ · · · such that si+1 = αi (si) for all i . If s0 ∈ S0 then σ

is referred to as a full execution sequence. We denote by σi the suffix of σ that starts from
its i th element-state, i.e., σi = si

αi→ si+1
αi+1→ si+2

αi+2→ · · · .
For assertions about the behavior of a program, we use the temporal logic LTL. Given a

set AP of atomic propositions, LTL formulas are defined as follows:

– for all p ∈ AP , p is a formula
– if φ and ϕ are formulas, then so are ¬φ, φ ∧ ϕ, ©φ, and φ Uϕ.

An execution sequence σ = s0
α0→ s1

α1→ · · · is said to satisfy an LTL formula φ (denoted
by σ |= φ) under the following conditions:

– if φ = p for some p ∈ AP, and p ∈ L(s0)
– if φ = ¬ϕ, and not σ |= ϕ

– if φ = ϕ ∧ ψ , and (σ |= ϕ) ∧ (σ |= ψ).
– if φ = ©ϕ, and σ1 |= ϕ

– if φ = ϕ Uψ , and there exists an i ≥ 0 such that for all 0 ≤ j < i , σ j |= ϕ and σi |= ψ .

We also use the following abbreviations: false = φ ∧ ¬φ, true = ¬false, φ ∨ ϕ =
¬((¬φ) ∧ (¬ϕ)), �φ = true Uφ, and φ = ¬�¬φ.

A state graph M satisfies an LTL formula φ (denoted by M |= φ), iff for each full
execution sequence σ in M , σ |= φ.

In this paper, the verification problem is considered to be “given a state graph M and a
specification expressed by an LTL formula φ, check if M |= φ”. Thus, from now on we con-
sider the specification formula φ to be fixed. In order to simplify the following definitions
we assume that the entire set of atomic propositions AP is in fact formed only by the atomic
propositions used in φ. In other words, φ makes use of all the atomic propositions in AP. This
condition immediately affects the following definitions of stuttering equivalence and visibil-
ity, as well as partial order reduction based on those notions (see Section 2.2), making them
relative to the specification φ. It also reflects the implementation (see Sections 2.4 and 4).

One of the main notions underlying the partial order reduction technique is the stut-
tering equivalence relation between execution sequences. In an execution sequence, some

COMBINING SOFTWARE AND HARDWARE VERIFICATION TECHNIQUES 255

consecutive states may have the same labeling, and specifications that refer to the atomic
propositions without counting the succession of states at which they are true cannot distin-
guish between such states. The execution sequence can then be divided into segments, each
consisting of consecutive identically labeled states. Two execution sequences σ = s0

α0→
s1

α1→ · · · and ρ = r0
β0→ r1

β1→ · · · , are called stuttering equivalent (denoted by σ ∼st ρ) if
there exist two infinite sequences of indices 0 = i0 < i1 < · · · and 0 = j0 < j1 < · · · such
that ∀k ≥ 0, L(sik) = L(sik+1) = · · · = L(sik+1−1) = L(r jk) = L(r jk+1) = · · · = L(r jk+1−1).
Intuitively, two execution sequences are stuttering equivalent if they have identical state
labelings after in each of them, any finite sequence of identically labeled states is collapsed
into a single state. Two state graphs M and M ′ are said to be stuttering equivalent, denoted
by M ∼st M ′, if for each full execution sequence σ of M , there exists a full execution
sequence ρ of M ′ such that σ ∼st ρ, and vice versa (for each full execution sequence ρ of
M ′, there exists a full execution sequence σ of M such that ρ ∼st σ).

The importance of stuttering equivalence is the following. We call an LTL formula φ

stuttering invariant if for any two execution sequences σ and ρ such that σ ∼st ρ, it holds
that σ |= φ iff ρ |= φ. This definition together with the definition of stuttering equivalence
between state graphs easily implies that if φ is stuttering invariant and M ∼st M ′, then
M |= φ iff M ′ |= φ. This is the basic idea behind partial order reduction: generate a model
M ′ with a smaller number of states than M and use M ′ to model check a stuttering invariant
property φ. Lamport [17] showed that any LTL property that does not use the next-time
operator is stuttering invariant. Conversely, in [22], it is shown that any stuttering invariant
LTL formula can be written without the use of the next-time operator ©. From now on, we
restrict ourselves only to stuttering invariant LTL formulas.

We conclude this section by introducing two basic concepts used in partial order reduction.
A transition α is said to be visible (with respect to φ) if there exist two states s and s ′ such
that s ′ = α(s) and L(s) �= L(s ′).

The other key concept is the independence relation between the transitions. Two transi-
tions α, β ∈ T are said to be independent if for all states s ∈ S, if α, β ∈ enabled(s), then:
(i) α ∈ enabled(β(s)); and (ii) β ∈ enabled(α(s)); and (iii) α(β(s)) = β(α(s)). Intuitively,
if both transitions are enabled at a state, then the execution of one of them must not disable
the other (i and ii), and executing these transitions in either order must lead to the same
state (iii). If two transitions are not independent, then they are called dependent transitions.

2.2. Basic partial order reduction

As explained in Section 2.1, the purpose of partial order reduction is to generate a reduced
state graph M ′ with a smaller number of states than the original state graph M and with the
property that M ′ ∼st M , and then perform the model checking of a stuttering invariant LTL
formula φ on M ′ rather than on M .

No matter what search technique is used (depth-first, breadth-first, explicit or symbolic),
with a traditional model checker one has to generate the successors of a state s for the
enabled transitions α ∈ enabled(s). However, a partial order search technique attempts to
explore the successors of a state only for a subset of the enabled transitions of s. Let’s
call such a set of transitions ample(s) ⊆ enabled(s). Following [21], we define below this

256 KURSHAN ET AL.

subset of transitions by the conditions C0 through C3 that it must satisfy. Exploring only
the ample transitions results in the reduced state graph M ′.

C0 (Emptiness). ample(s) = ∅ iff enabled(s) = ∅.

Since we are trying to generate for each execution of M a corresponding, stuttering equiv-
alent execution sequence in M ′, we must explore at least one successor of s in M ′, if there
are any successors of s in M . In our case, we have assumed for convenience that state s has
at least one transition enabled in M , cf. Section 2.1. Therefore, C0 implies that ample(s) �= ∅.

C1 (Faithful decomposition). Along every execution sequence of transitions in M that
starts at s, a transition that is dependent on any transition in ample(s) cannot be executed
without a transition from ample(s) occurring first.

This constraint is introduced to ensure that any execution sequence of the full state
graph M may be represented by a stuttering equivalent execution sequence in the reduced
graph M ′. For this purpose, the transitions of the original execution sequence may have
to be re-ordered. Condition C1 ensures that all transitions before the first ample transition
α in the original execution sequence are independent of α and, hence, can be commuted
with α.

In order to implement condition C1, we can use further information about the semantics
of the modeled system. For example, given a collection of concurrent processes, with the
program counter of one process allowing the execution of only one local transition, choos-
ing this transition as a singleton ample set will not violate condition C1. On the other hand,
consider the case where the program counter of the process is at a point where there is
a selection between two input messages, of which one is enabled at the current state and
the other is not (until another process progresses to send such a message). In this case,
selecting the enabled input transition α as a singleton ample set may violate C1, since some
transitions independent of α may execute in the other process enabling the alternative input
transition, which is interdependent with α. Implementing condition C1 typically involves
identifying such cases, see, for example, [12]. Each such case needs to be checked against
the definition of condition C1.

C2 (Visibility). If there exists a visible transition α ∈ ample(s), then ample(s) =
enabled(s).

In other words, if ample(s) ⊂ enabled(s) then no transition in ample(s) is visible. In
practice, one tries to avoid including visible transitions in the ample set at state s, since
otherwise the entire set of enabled transitions enabled(s) has to be explored. Indeed, let two
independent transitions, α and β, be enabled at state si in graph M and let M allow these
two executions:

σ = s0
α0→ s1

α1→ · · · si
α→ s1

i+1
β→ si+2 · · ·

ρ = s0
α0→ s1

α1→ · · · si
β→ s2

i+1
α→ si+2 · · ·

COMBINING SOFTWARE AND HARDWARE VERIFICATION TECHNIQUES 257

Condition C1 by itself suggests that we do not necessarily need both executions σ and ρ

in the reduced graph M ′. That is: if only C1 is applied then σ may not be generated in
M ′ assuming that ρ will represent it in M ′ (or vice versa). Now, consider the case that the
propositional labeling is different at states s1

i+1 and s2
i+1 where the two executions σ and ρ

differ from each other, i.e. L(s1
i+1) �= L(s2

i+1). If both transitions α and β are visible then it
cannot be guaranteed that executions σ and ρ are stuttering equivalent: they are not if, for
instance, L(si) �= L(s1

i+1) and L(si) �= L(s2
i+1). Therefore, ample(s) = enabled(s) = {α, β}

must hold in this case to force exploration of both transitions α and β. However, if one of the
two transitions, let, α, is invisible, then σ ∼st ρ is guaranteed. This is because in this case
L(si) = L(s1

i+1) and L(s2
i+1) = L(si+2). Then, we don’t have to generate both execution

orders in M ′ and may select ample(s) = {α} to factor out the execution sequence ρ.

C3 (Cycle closing). Given an execution sequence σ = s0
α0→ s1

α1→ · · · of M , if sk = s0

for some k > 0, then there exists 0 ≤ i < k such that ample(si) = enabled(si).

In other words, any cycle in the full state graph of M must have at least one state s on
the cycle such that ample(s) = enabled(s). The intuitive reason for this condition is to
avoid postponing an enabled transition indefinitely while generating the reduced graph M ′.
A good reduction algorithm will aim at selecting ample sets that satisfy C1 and C2 yet
contain few transitions, thus postponing the execution of visible and dependent transitions
as long as possible. Conditions C1 and C2 guarantee that any postponed transition remains
enabled. However, if the search on the reduced graph M ′ closes a cycle and terminates,
the postponed transitions will not be executed at all. This may cause a relevant execution
sequence of M to be lost, not being represented by a stuttering equivalent execution of M ′.
Condition C3 prevents this.

These four conditions complete the definition of the partial order reduction. It has been
shown [21] that if a search generates M ′ instead of M while satisfying C0 through C3, then
M ′ ∼st M .

2.3. Static partial order reduction

One of the goals for our modification to the basic form of partial order reduction is to separate
this technique from the model checking algorithm. We achieve this by a supplementary
compilation phase which statically analyzes and preprocesses the model, as explained below.

In general, the system to be analyzed is not given directly as a state graph M (cf.
Section 2.1), but rather as a set of component processes {P1, P2, . . . , Pn} and a set of vari-
ables {V1, V2, . . . , Vm}. The states of M are then tuples (vectors) of the form (c1, . . . , cn,

v1, . . . , vm), where ci is the control point (state) of process Pi and v j is the value of the
variable Vj . Thus, the state vector is composed of a control part and a data part.

The component processes can perform local actions and communicate with each other
via certain mechanisms such as shared variables or message passing (blocking or non-
blocking). The transitions of the underlying state graph M are then the local transitions of a
single process, accompanied perhaps by assignments to variables, and the shared transitions
of two or more processes (e.g., a communication transition).

258 KURSHAN ET AL.

Given a state graph M , we define the control flow graph of a component process Pi by
projecting the state vectors of M onto the i th component. More exactly, if s[i] is the i th
field of the state vector s ∈ S, where S is the set of states of M , the set of control points of
process Pi is defined as CPi = {s[i] | s ∈ S}.

A transition α ∈ T of the state graph M is actually performed by one or more component
processes (in the case of local and shared transitions, respectively). With each transition α

we associate therefore a set of processes act(α) ⊆ {P1, P2, . . . , Pn} that are active for the
transition α. A process is active if it updates its control point and, possibly, some variables,
while executing transition α. For example, in a system with rendezvous synchronization,
act(α) would include all the processes that participate in the synchronization on α. However,
in a message passing system, the active set of a send transition only includes the sending
process. The receiving process does not actually participate in this transition, since the send
transition only updates an input buffer, which is a variable in the system.

The control flow graph G Pi of a process Pi is defined as a labeled directed graph with
the set of vertices CPi . For two control points c1, c2 ∈ CPi , there is an edge from c1 to c2

in G Pi , iff there exist two states s1, s2 ∈ S and a transition α ∈ T such that s1[i] = c1,
s2[i] = c2, Pi ∈ act(α), and s2 = α(s1). Thus, transition α is projected onto edges in the
control flow graphs of the component processes in act(α). Edge (c1, c2) in G Pi is labeled
by (the set of) all the transitions {α1, . . . , αk} ⊆ T which are projected onto this edge. If
any of those transitions is executed, we say that edge (c1, c2) is executed. Note that the set
of transitions labeling an edge is never empty. One may also observe that a system M may
often be formalized in such a way that each edge in a control flow graph will be labeled
with exactly one global transition.

In the following, the terms local transition and local state are used to refer to an edge and
a vertex in a control flow graph G Pi , whereas the terms global transition and global state are
used as synonyms for a transition and a state of the underlying state graph M , respectively.
The local transition γ of G Pi that corresponds to a global transition α is referred to as the
local image of α in G Pi .

The generic approach to partial order reduction described in Section 2.2 operates by
defining a reduced state transition graph M ′ which is equivalent to M . Past approaches have
incorporated this technique directly into model checkers, by modifying their algorithms to
explore at each state s the transitions in ample(s) rather than all the transitions in enabled(s).
Our key idea is different. Suppose that the component processes of the model can be modified
to make a transition α enabled at s precisely if α ∈ ample(s) in the original model. Then the
original model checking algorithm can be applied without modifications, resulting in the
verification of the reduced model M ′. Besides simplicity, this method allows partial order
reduction to be combined with all features of the existing model checker. Essentially, ver-
ification of a system is split into two phases: a syntactical transformation of the system to
a reduced system that generates the partial order reduction in the course of the state space
search of model checking, followed by the actual application of model checking.

To illustrate the basic idea by an example, suppose that we are given the two-process
system depicted in the upper left box of figure 1. Each process has only one transition, α and
β respectively, both with enabling condition true. Thus, α is always enabled when process
P is at state s1, and β is always enabled when process Q is at state r1. Suppose that P and

COMBINING SOFTWARE AND HARDWARE VERIFICATION TECHNIQUES 259

s1,r1

β

β

α

s2,r1 s1,r2

s2,r2

α

2

s2,r1

s1,r1

β

α

s2,r2

Model Checking

Basic

Model Checking

Reduction
with Partial Order

βα

βα

M

r2

r1

Static
Transformation

Process QProcess P

Modified System

true

s1

state s2
if P is at

s2

M

true

r2

r1

Original System

Process QProcess P

1M

3

s2

s1

true

Figure 1. An example static transformation.

Q run concurrently, and that concurrency is modeled by interleaving. Then the upper right
box in figure 1 shows the state transitions of the underlying state graph M1 of the original
system, as generated by a model checker without partial order reduction. A model checker
with partial order reduction capabilities might produce the state transition graph M2, shown
in the dashed box. Assuming that α and β are invisible, we have M1 ∼st M2.

Our method transforms the original system statically into the system shown in the lower
left box of figure 1, by a compilation prior to the model checking step. The modified system
is described in the same language as the original, and can therefore be analyzed by the same
tool. However, its structure already incorporates the partial order reduction. The modified
enabling condition of transition β guarantees that the state graph M3 generated by the model
checker from the modified system is the same as M2, and therefore M3 ∼st M1.

The above example shows that our transformation changes the enabling conditions of
the transitions in the component processes. Generally, in order to guarantee the conditions
C0–C3 introduced in Section 2.2, the compilation step needs to determine for any global

260 KURSHAN ET AL.

state which transitions can form an ample set, and change the enabling conditions of the
transitions accordingly. This may include introducing conditions on the current state of
other processes. Computing these changes is quite easy for conditions C0–C2, and Section 4
explains how to check C0 and C1. However, condition C3 refers to the state transition graph
M ′, which is only unfolded in the verification stage. Thus, it seems difficult to determine
statically, at compilation time, the transition cycles that will appear in M ′. Condition C3
can be checked naturally during a depth-first search, as implemented in most previous
partial order model checkers, which use explicit state enumeration. However, that is the
opposite of our goal, since we aim for BDD-based symbolic verification, which operates in
a breadth-first fashion.

To make it easier to implement condition C3 through a syntactic transformation of the
system, below we conservatively modify this condition and combine it with C2, observing
that both C2 and C3 give conditions under which ample(s) = enabled(s) must hold, i.e. all
enabled transitions are to be explored.

A subset of transitions T̂ ⊆ T is called a set of sticky transitions if it satisfies these two
conditions:

– T̂ includes all visible transitions.
– Given an execution sequence σ = s0

α0→ s1
α1→ · · · of M , if sk = s0 for some k > 0,

then there exists i , 0 ≤ i < k such that αi ∈ T̂ . In other words, any cycle in the full state
graph M includes at least one sticky transition.

Now, we state the combined condition C2′ as follows:

C2′ (Visibility and cycle closing). There exists a set of sticky transitions T̂ such that for
any state s, if ample(s) contains a transition from T̂ then ample(s) = enabled(s).

Thus, even when being ample, transitions in T̂ “stick” to all other transitions enabled at
state s and force their exploration. From the definition of T̂ , it follows that any cycle in
the reduced graph M ′ will execute at least one sticky transition. Since M ′ is only explored
through ample transitions, C3 is implied. C2 is also implied, since T̂ also includes all visible
transitions. Thus, the partial order reduction can be performed under the three conditions
C0, C1 and C2′.

A set of sticky transitions T̂ may be calculated at compile time. One efficient method of
doing this is described in the next section.

2.4. Calculating sticky transitions

Recall that a transition is visible iff it changes the value of an atomic proposition used in a
specification φ. We have seen that the set T̂ must contain all visible transitions. In practice, a
concurrent system consists of communicating processes, and atomic propositions appear as
boolean predicates over the (data) variables and control points of the processes. We illustrate
this using an example. Consider the concurrent system in figure 2, which is composed of
two processes P and Q, and three variables x , y and z. Process P is a loop that repeatedly

COMBINING SOFTWARE AND HARDWARE VERIFICATION TECHNIQUES 261

Figure 2. Control flow graphs of the example.

executes the three sequential assignments “y := 0”, “x := x + 1” and “y := x”. Similarly,
process Q is a loop that executes the assignments “x := x −1” and “z := x”. In figure 2, the
local transitions in the control flow graphs of P and Q are annotated with the corresponding
assignments. The underlying state graph of this system has global state vectors of the form
(c1, c2, x, y, z) where c1 and c2 are the control points of processes P and Q, respectively,
and x , y and z are the values of the corresponding variables. The global transitions, denoted
by α1, α2, α3, β1 and β2, are in fact the five assignments, which are bound to and executed
at the corresponding local transitions.

Suppose that a specification of the system in figure 2 is the LTL formula �p, with p
the atomic proposition y > 3. The only transitions that can directly affect the value of this
predicate are α1 and α3. Therefore, these are the only visible transitions with respect to the
given specification.

A transition may leave the value of an atomic proposition unchanged even though it as-
signs a variable referenced in it. This is hard to analyze at compile time. We conservatively
mark as visible all local transitions that assign (data) variables used in the atomic proposi-
tions of a specification. An atomic proposition may also refer to specific control points, for
example, be of the form “process P stays at point p1”. In such a case, it can be statically
analyzed whether the execution of a local transition, for example, (p2, p3), changes the
value of the atomic proposition. If it does, it must be marked as a visible transition.

Below, we assume that static analysis conservatively calculates the set of local visible
transitions Ev , such that all local images of each visible global transition belong to Ev .

Besides visible transitions, the set of sticky transitions T̂ includes for each cycle in the
full state space of M at least one transition that is executed on that cycle. Consider figure 3
that presents a global cycle in the state graph from figure 2. It is easy to see that the local

Figure 3. A global cycle in the underlying state graph.

262 KURSHAN ET AL.

images of the global transitions that appear in this global cycle form a local cycle in the
control flow graph GP (and likewise for GQ). This is natural, since transition α1 moves the
control point of process P from p1 to p2. In order to complete the global cycle, the control
point of P has to be restored back to p1. This is only possible by executing a sequence of
global transitions whose local images form a local cycle in the graph G P . In general, one
can observe the following:

Lemma 1. If the global transitions {α1, . . . , αk} ⊆ T are executed on a global cycle, and
if process P ∈ act(αi) for some αi , then the local images of the transitions {α1, . . . , αk}
form a (local) cycle in the control flow graph G P .

Let E be the set of edges (i.e. local transitions) in all control flow graphs GP1 , . . . GPn ,
and Ev ⊆ E the set of local visible transitions. Assume that a subset Ê ⊆ E is chosen
such that Ev ⊆ Ê and, for each graph GPi , removing the edges in Ê from G Pi results in an
acyclic sub-graph. Then the following holds.

Lemma 2. The set T̂ of all global transitions whose local transitions are in Ê, forms a
set of sticky transitions.

Proof: Since any global cycle in system M must be projected onto a local cycle in each
control flow graph active along this global cycle (see Lemma 1), and these local cycles
are broken by some local transitions in Ê , the global cycle must contain one or more
global transitions with those local transitions. However, all such global transitions have
been included into T̂ . Since T̂ also includes all the global visible transitions, as all their
local images belong to Ev , it follows that T̂ forms a set of sticky transitions.

For example, in the two control flow graphs given in figure 2 there are two local cycles
C1 and C2. Then the set T̂ = {α1, α2, α3, β1} can be used as a sticky transition set that
guarantees condition C2′. Here, α1 and α3 are included into T̂ since their local images, the
edges (p1, p2) and (p3, p1), must be conservatively marked as visible and, hence, included
into Ev . Global transitions α2 and β1 also appear in T̂ , if their local images (p2, p3) and
(q1, q2) are choosen to break the cycles C1 and C2, respectively.

Lemma 2 effectively suggests to select sticky transitions from the set of local transitions
E . This can be done advantageously at compile time, during the phase of syntactic trans-
formation of system M . Next, we explain a method to calculate the set Ê of local images
of sticky transitions.

Since executing a sticky transition from some state forces all enabled transitions at that
state to be explored, the number of sticky transitions should be kept small in order not
to diminish partial order reduction. In the example above, T̂ must contain α1 and α3 as
visible transitions. Since transitions α1 and α3 already break the cycle C1, transition α2 is
no longer needed in T̂ . Thus, {α1, α3, β1} is a smaller set of sticky transitions. However,
we can do better still. If we can conclude that any global cycle that includes α2 must
also include β1 (say), then we can further reduce T̂ to {α1, α3} which corresponds to
Ê = {(p1, p2), (p2, p3)}. A method to calculate Ê with this type of reduction is explained
next.

COMBINING SOFTWARE AND HARDWARE VERIFICATION TECHNIQUES 263

Finding a minimal set of edges breaking the cycles in a graph is known as the feedback
arc set problem, which is shown to be NP-hard in [13]. Our algorithm uses known heuristic
methods to compute such sets, as well as a static analysis of the data effects of transitions,
as explained below.

In order to calculate the set of local sticky transitions Ê , we start by including in it all the
local visible transitions Ev , and then remove those transitions from the local control flow
graphs G P1 , G P2 , . . . , G Pn . Then, we analyze the resulting local graphs G ′

P1
, G ′

P2
, . . . , G ′

Pn

to find local transitions that break the remaining local cycles: the found transitions are also
included into Ê . For this we can use heuristics, such as in [2, 6], to minimize the number
of transitions we select. Alternatively, we can simply perform a depth-first search on the
remaining transitions in the local graphs G ′

P1
, G ′

P2
, . . . , G ′

Pn
, and select the backward edges

(edges that go back to a node that is in the DFS stack) found in the course of DFS. This
may not produce an optimal result, but is linear in the number of edges in the local graph,
and performs well in practice. This algorithm can be improved as explained next.

The computation of Ê as described above conservatively considers only the effect of
transitions on the control part of the state vector. However, a sequence of global transitions
only closes a global cycle if the data variables also revert to the same value. A smaller set of
local sticky transitions may be obtained by taking into account the effect of transitions on the
data variables. To preserve the static character of our method, we restrict ourselves to effects
that can be analyzed at compilation time. To illustrate this, observe that in the global cycle
given in figure 3, transition α2 changes the value of x to 1, whereas transition β1 restores it
to 0. Examining the assignment syntax of the local transitions in figure 2, we deduce that
any global cycle that includes the global transition α2 must also include the execution of the
opposite transition β1 (and vice versa), since it is not possible to have a global cycle along
which x is only incremented or only decremented. We have already seen that if α2 appears
in a global cycle, then α1 and α3 must also be executed along the same cycle. Thus, we can
further reduce the set of sticky transitions for this system to T̂ = {α1, α3}.

In general, assume that we are given a subset of variables V̌ ⊆ {V1, . . . , Vm}, heuristically
viewed as important for partial order reduction, such that for each variable x ∈ V̌ , a partial
order ≺ is defined on the possible values of x . This order also induces an equivalence relation
�: namely, x1 � x2 iff x1 �≺ x2 ∧ x2 �≺ x1. We will commonly use the terms “greater”,
“less” and “equivalent” when referring to ≺ and �.

For example, in a system M based on message passing, a good choice for a variable
x ∈ V̌ is an input buffer queue of a process, and an order ≺ is introduced by the function
#(x) that counts the number of messages currently in the queue. For two values x1 and x2

of the queue variable x , we have x1 ≺ x2 iff #(x1) < #(x2).
The effect of a local transition γ on variable x ∈ V̌ with respect to order ≺ is said to be

– incrementing (decrementing), if after γ is executed, any new value of x is always greater
(less) than the previous value of x , with respect to ≺,

– null (no effect), if γ never changes equivalence class of value of x , with respect to ≺,
– complex, otherwise.

A local transition is conservatively classified as having complex effect on a variable x
if its effect on x is impossible or difficult to determine statically. This only means that

264 KURSHAN ET AL.

our static analysis extracts no information for reduction in this case, but does not affect
our subsequent reasoning. For example, in figure 2, the local transitions that correspond to
assignments β1, α2 and β2 have, respectively, decrementing effect, incrementing effect and
no effect on x with respect to the natural total order on integers, <. The local transition
(that corresponds to) α3 has complex effect on y with respect to < since α3 assigns to the
variable y but no more information about its effect can be immediately deduced.

We assume that static analysis can generate a mapping � that captures effects of local
transitions E on variables in V̌ :

� : E × V̌ → {“incrementing”, “decrementing”, “null”, “complex”}

The mapping �, the set of visible local transitions Ev and the local control flow graphs
G ′

P1
, . . . , G ′

Pn
(with visible transitions removed) together constitute the input to the algo-

rithm ComputeStickySet explained below.
A local transition is called a monotonic transition if it has incrementing or decrementing

effect on at least one variable in V̌ .
Two local transitions are called opposite to each other iff there exists a variable x ∈ V̌ such

that one transition has incrementing or complex effect on x , and the other has decrementing
or complex effect on x . A non-monotonic transition with complex effect on at least one
variable in V̌ is considered opposite to itself.

When selecting sticky transitions that will break all cycles in the global state space, one
can observe that a transition α in the global state graph M that changes the value of some
variable x can only be in a global cycle with a transition that compensates the effect of α

on x . From this follows that every global cycle that executes a monotonic local transition γ

must also execute a local transition opposite to γ , in order to return to the same global state.
Hence, some monotonic transitions may be removed and yet enough local transitions may
remain to break all global cycles in M . This observation is problematic to use, since the
number of cycles in a graph can be exponentially bigger than the size of the graph. Instead,
in our algorithm ComputeStickySet we perform a depth-first search in which backward
edges are selected to break the local cycles that remain after removing some monotonic
transitions. The following lemma supports this idea:

Lemma 3. For any reachable cycle C in a directed graph G, one of the edges of C will
appear as a backward edge in the course of the depth-first search in G, for any order in
which the successors of a vertex are searched.

Since visible transitions are sticky, cycles that contain a visible transition are automatically
handled. Therefore, all visible transitions Ev can be eliminated from the local control flow
graphs as a first step.

Let E ′ be the set of all edges in the resulting control flow graphs G ′
P1

, . . . , G ′
Pn

, i.e.
E ′ = E \ Ev . Define the function

opptr : E ′ → 2E ′

such that opptr(γ) is the set of all local transitions opposite to γ in E ′; γ is also included
into this set if it is opposite to itself.

COMBINING SOFTWARE AND HARDWARE VERIFICATION TECHNIQUES 265

Let � ⊆ E ′ and G a sub-graph of G Pi . We denote by

– edges(G) the set of edges in G,
– monotonic(�) the set of monotonic transitions in �,
– rem(G, �) the sub-graph remaining after removing the edges � from graph G,
– backedges(G) the set of backward edges found in G in the course of DFS (we assume

that the vertices of G are arbitrarily indexed to direct the DFS).

Algorithm ComputeStickySet given next calculates the set Ê of local sticky transitions.
The loop in lines 1 to 4 iterates with parameter i taking values in the sequence 1, 2, . . . n.
Thus, for each graph G ′

Pi
we calculate the sub-graph gi remaining after removing ev-

ery monotonic transition γ such that γ may have opposite transitions only in graphs
G ′

Pi+1
, . . . , G ′

Pn
. In line 5, DFS is applied to each graph gi to find the backward edges,

which are then included into Ê together with local visible transitions.

1. for i ∈ (1, . . . n) do
2. � := {γ ∈ monotonic(edges(G ′

Pi
)) | opptr(γ) ⊆ ⋃

j>i edges(G ′
Pj

)};
3. gi := rem(G ′

Pi
, �);

4. od;
5. Ê := Ev ∪ ⋃

i backedges(gi);
6. return Ê ;

Algorithm 1. ComputeStickySet.

Theorem 1. The set T̂ of all global transitions that execute the local transitions in Ê
which is returned by algorithm ComputeStickySet forms a set of sticky transitions.

Proof: Since every visible transition executes a (local) transition in Ev (see above) and
Ev ⊆ Ê , T̂ includes all visible transitions. We prove next that global transitions in T̂ also
break all global cycles.

Consider a global cycle C , and let loc(C) be the set of local cycles that C is projected onto
(cf. Lemma 1). Note that execution of each global transition in C will involve executing
local transitions in one or more cycles in loc(C), and every local transition γ in each cycle
in loc(C) will execute along C . Therefore, if γ is monotonic, an opposite transition must
also execute along some cycle in loc(C).

If some cycle in loc(C) includes a (visible) transition from Ev then C is broken, as
Ev ⊆ Ê .

Now, consider a cycle C such that each cycle in loc(C) includes only transitions from the
set E ′ = E \ Ev , i.e. belonging to graphs G ′

P1
, . . . , G ′

Pn
. In this case, we prove that C will

include a global transition from T̂ that executes some local transition in backedges(gi), for
some i . Contrarily, assume that C does not execute any local transition in

⋃
i backedges(gi),

and, hence, none of those local transitions belongs to any cycle in loc(C). This means by
Lemma 3 that no cycle in loc(C) remains completely in g1, . . . , gn , which may be the case
only if each such cycle has been already broken by the algorithm’s action that removes
monotonic transitions in line 3.

266 KURSHAN ET AL.

Consider then a local cycle in loc(C) such that it belongs to graph G ′
Pk

with the largest
process index k, and a monotonic transition γ removed from this cycle by the action in line 3
and, hence, included into set � in line 2. Now note that for transition γ to be included into set
�, all transitions opposite to γ (if any) must belong to graphs G ′

Pk+1
, . . . , G ′

Pn
. On the other

hand, as explained above in the proof, γ must have an opposite transition γ̄ in (at least) one of
the cycles loc(C), hence, in G ′

Pj
, where j ≤ k. The contradiction finalizes the proof.

Note that the contents and size of set Ê returned by algorithm ComputeStickySet may
depend, first, on the order in which control flow graphs G ′

P1
, . . . , G ′

Pn
are processed by

the loop in lines 1 through 4 (i.e. on the order in which system’s processes are indexed)
and, second, on the order in which the vertices of the remaining sub-graph gi are indexed
for DFS. Thus, heuristics for both process ordering and vertex indexing may be useful to
optimize the algorithm. This issue is left open for now.

3. Hardware/software co-verification methodology

In this section we present a co-verification methodology and a tool that combine static
partial order reduction with hardware-oriented verification techniques.

We have developed a co-verification tool based on existing programming environments
for VHDL [28], Verilog [27], and SDL [23], and an existing model checking engine,
COSPAN [9, 10]. However, the methodology described below is not strongly tied to a
particular representation of hardware or software, except with respect to synchrony as-
sumptions about the design. For hardware, it is assumed that the design is clock cycle
dependent and thus we use a synchronous model of coordination. In contrast, software
is presumed to operate under synchronization conditions guaranteed by its host, and thus
coordination among software design components is considered to be asynchronous, and
modeled using interleaving. Since different abstraction levels can be used for hardware and
software, we do not make an assumption about their relative speeds.

The choice of a hardware description language is strongly influenced by the computer
industry, where VHDL and Verilog are in widest use and have been standardized by the
IEEE. Our platform supports both, by translating them into S/R, the native language of
COSPAN, using FormalCheckTM2 translators. For the software part, we use SDL, a standard
language of the International Telecommunications Union (ITU-T), an overview of which is
presented in the next section. Here, two of the co-authors have developed a model checking
tool SDLCheck [19] that implements static partial order reduction, generates a (reduced)
S/R model of the original SDL system and then, on the verification phase, makes use
of COSPAN. To support co-verification, SDLCheck also implements interface constructs
introduced in [18] as an extension to SDL to allow describing an interface between software
and hardware components.

The general structure of the tool support for our co-verification technology is shown in
figure 4. We assume that the hardware part of a co-design is described either in VHDL
or Verilog and the software part in SDL. The interface between hardware and software is
described in an extended SDL, SDL+, using interface constructs. In essence, interface con-
structs allow an SDL+ process to read and write combinational signals from the hardware

COMBINING SOFTWARE AND HARDWARE VERIFICATION TECHNIQUES 267

(SDLCheck)

HW

SDL SDL+

INTERFACESW

synchronousmessage passing

HDL

SDL to SR compiler
HDL Compiler

COSPAN

SR

Figure 4. The general structure of the tool support.

part. Below, we refer to such a process as an interface process. The coordination of an
interface process with software processes and with other interface processes is handled
completely by the software communication mechanism, which in the case of SDL is mes-
sage exchange through buffers. Therefore, an interface process looks like another software
process from the software point of view. On the other hand, the interaction of the interface
process with the hardware is performed through shared variables called interface variables,
using the synchronous model of the hardware. Therefore, an interface process appears as
another hardware module to the hardware part of the system.

In a co-design system we distinguish between two types of global transitions. All tran-
sitions of a single software process are software transitions. As explained in Sections 2.3
and 2.4, a software transition changes the control point of the process and may also ex-
ecute either a local action or a shared communication action. All global transitions of a
hardware component are hardware transitions. Since hardware has a synchronous nature, a
hardware transition corresponds to simultaneous transitions of all hardware modules in the
synchronous hardware component. An interface process can have both types of transitions.
A transition of an interface process in which an interface variable is referenced counts as a
hardware transition, otherwise it counts as a software transition.

Since the static partial order reduction only restricts the software transition relation,
as explained in Section 2.3, its implementation is only influenced by the selection of a
particular software description language. The details of our SDL-based implementation of
static partial order reduction are described in Section 4 below. For now, we only present the
general picture.

First, we describe the basic methodology. The hardware, software and interface parts of
a co-design system, and the property φ to be checked are all translated into a formalism

268 KURSHAN ET AL.

based on synchronous automata, used as an input interface by a model checker (in our
current implementation, the model checker COSPAN and the S/R language). This enables
us to treat the entire co-design system, with parts of different nature, as a single, formally
synchronous model, that is to be verified with regard to an automaton expressing property
φ. Software asynchrony is modeled by self-looping, using nondeterminism as proposed in
[16]. The synchronous model generated for the software and interface processes is aug-
mented with an additional constraint automaton, which implements static partial order
reduction by restricting the software transition relation. This model is then composed with
the synchronous hardware model, finalizing the compilation stage of co-verification. Next,
the model checking stage starts out by applying localization reduction [14] to the overall
combined synchronous model, reducing it relative to the checked property φ. For example,
in software-centric verification (figure 5, discussed below), which is aimed at properties
ensured mainly through control structures in the software part, one may expect much of the
hardware to be abstracted by localization reduction. Finally, the remaining reduced model
is analyzed using a BDD-based search.

A more advanced methodology can be applied, if a co-design system is so complicated
that the simple combination of three reduction techniques, described above, is not sufficient,
i.e. may result in state space explosion. In this case, first, the entire co-design system is
translated into a synchronous model in a conventional way, i.e. without static partial order
reduction, and then localization reduction is applied alone to reduce this synchronous model
relative to the checked property φ: it conservatively removes variables. As a by-product, the
set of removed variables is reported. Using it, the localization reduction is automatically
projected onto the original co-design system, which is correspondingly simplified by remov-
ing those variables. Localization reduction also reduces the range of values of a surviving
variable, by compressing it to the subset really used in the reduced model, and this effect is

sw

sw

sw

sw

sw

sw

swhwhw hw hw

hw

hw

Figure 5. Software-centric view.

COMBINING SOFTWARE AND HARDWARE VERIFICATION TECHNIQUES 269

also projected onto the original co-design system. At last, the basic methodology is applied,
as described above, to this reduced co-design system. Since the system is now smaller, i.e.
more abstract, the number of sticky transitions generated by the static partial order reduction
will, in some cases, be smaller too, thus reducing the following model checking search.

Combining partial order reduction with BDDs, or, in general, with hardware-oriented
reductions has been motivated by the necessity to deal with the complexity problem known
as state space explosion. However, this is not the only problem faced when verifying a real
system with a model checker. A non-trivial task also arises from the technological side,
namely constraining the system to be verified. In practice, a system is always designed
under certain assumptions with respect to the behavior of the system environment. The
environment provides inputs to the system and, in general, interacts with it, ensuring the
external conditions for correct functionality.

Current model checking technology typically suggests capturing the designer’s envi-
ronmental assumptions by constraints expressed in temporal logic [14, 20]. Although this
approach works when adequate abstractions are obvious enough, there are many other cases
in which it fails. In particular, using temporal logic constraints appears difficult for a sub-
system of a larger system. A subsystem is not intended to be delivered to a customer as a
product, and the external conditions necessary for its correct operation are therefore often
not documented by the designer. Moreover, those conditions typically reflect the internal
behavior of the remainder of the system, and are thus often complicated and difficult to
express in temporal logic.

Yet, since checking an entire system is often prohibitively complex, such subsystems
make up a large fraction of the target domain for model checking. We argue that our co-
verification methodology can be used to solve this problem by making it feasible to use
as an environment the surrounding subsystems themselves, after replacing some of them
either by abstractions in the same design language or by appropriate constraints. This
environment is then translated, together with the central subsystem subject to verification,
into a combined synchronous model and subject to model checking. This approach can
be successful under two conditions: first, the description of the central subsystem and the
surrounding subsystems should be easy to extract and modify, and second, the combined
model should not lead to irreducible state space overhead. For mixed hardware/software
designs described in high-level languages such as VHDL/Verilog and SDL, respectively, we
can identify two extremal co-verification cases which generally satisfy the first condition,
while our approach seems promising in ensuring the second.

The extremal co-verification cases mentioned above are software-centric and hardware-
centric co-verifications, in which the properties to be verified refer entirely or mainly either
to the software part or to the hardware part, respectively. The two cases are illustrated
in figures 5 and 6, which represent software and hardware components by circles and
rectangles, respectively, and interface processes by hybrid shapes (half circle, half rectan-
gle). In the software-centric view, the central subsystem comprises several software pro-
cesses which communicate directly to each other and/or indirectly, via interface processes, to
hardware components. The hardware components are generally also connected to each other.
In a software-centric view, they are encapsulated by the layer of interface processes and form
together with this layer the environment of the central software subsystem. Symmetrically,

270 KURSHAN ET AL.

sw hw swhw

sw

sw

hw

sw sw

hw

hw

hw hw

Figure 6. Hardware-centric view.

in the hardware-centric view, the hardware design occupies the central place, whereas the
software components together with the interface processes form its environment. One can
expect that in either of the two extremal co-verification cases localization reduction com-
bined with static partial order reduction may abstract away a significant part of the state
space of the environment.

4. Implementation

Before describing the implementation of our co-verification methodology (realized in
SDLCheck [19]), we first briefly present the semantics of SDL, which is used as part
of its language platform.

4.1. Overview of SDL

An SDL system is given as a set of processes which are assumed to run concurrently and
may have local variables. The communication between processes is handled via message
passing through infinite buffers. For the purposes of practical verification we however re-
strict these buffers to a finite size. Each process has a single FIFO buffer which queues all
incoming messages. A message consists of a signal name, and optionally some parameter
values, whose number and types are specified in the signal declaration. Below, some com-
monly used SDL constructs are explained by means of the example3 given in figure 7. In
the example the annotations “control point i” reflect the control points of the SDL process.
SDL actions between control points correspond to the local images of the global transitions,
in the control flow graph.

COMBINING SOFTWARE AND HARDWARE VERIFICATION TECHNIQUES 271

s1

b a(x)

c(x) x=0

x := 1

Control Point 1

Control Point 2

Control Point 3

Control Point 4

SDL State

true

false

s2

s1

Decision

Control Point 5

Input

Output

Task

Input

SDL State

Figure 7. An example SDL process.

An SDL state construct is the point where an SDL process can check its incoming message
buffer. Therefore, an input action, which is used to consume a message from the buffer,
is always used together with an SDL state. An SDL process can only consume the first
message in the buffer. There are some constructs (e.g. save, priority input) that override
this restriction. An input construct specifies a signal name, and possibly local variables to
be assigned, if the signal is defined to carry parameters. In our example, a is such a signal,
which carries one parameter. When the process consumes signal a at the SDL state s1, the
parameter value carried by a is assigned to local variable x of the process, the message is
removed from the buffer head and the process moves from control point 1 to control point 5.

An output action is used by a process to send a message to another process. It specifies
the name of the signal, and also the parameter values if the signal being sent is capable
of carrying parameters. In our example, the message sent at control point 2 will have the
signal name c and will carry as a parameter the current value of the local variable x at the
time the output action is executed.

A task action is used to assign to local variables of a process. A decision action is similar
to an if-then-else statement of usual programming languages. In our example, if the process
stays at control point 5, and the current value of x is 0, then the process moves back to SDL
state s1, or, in other words, makes a transition to control point 1. If the value of x is nonzero,
the process moves to control point 2.

There are a number of other constructs (e.g., none input and any decision for nondeter-
minism, procedure call, etc.) to describe the behavior of a process, but we don’t present
them here, although these constructs are handled by our implementation.

An SDL system may contain, beside processes, entities called channels. These are used
to describe the communication paths between processes. There are two types of channels,
delaying and non-delaying. In our implementation, a delaying channel is viewed as another
SDL process which receives messages and forwards them to their receivers.

272 KURSHAN ET AL.

4.2. Static partial order reduction in the SDL to S/R compiler

In this section we explain how we implement our method of changing the enabling conditions
of transitions so that the generated code has the partial order reduction incorporated.

As explained in Section 4.1, a transition of an SDL process is always defined to occur
between two control points of the process. The ample sets that we define will always contain
all enabled transitions of a single process. Therefore, we say that an SDL process P is ample
at a state if its current enabled transitions form an ample set. Hence, we need to identify
the local states of P for which the current enabled transitions satisfy the conditions C0, C1
and C2′.

We start with condition C1 and examine the types of transitions introduced in Section 4.1.
We will check if a transition is independent of all transitions of other processes in the entire
system and if this is the case, tag it as GoodForC1. An input transition is always independent
of all transitions of any other process. Note that an input transition may change the local
variables of that process if the consumed signals carries parameters. However, this does not
cause a problem since no other process can read4 or write to a local variable of P . Another
effect of an input transition is the removal of the message at the head of the buffer. The
buffer of P is also accessed by any process P ′ that can send a message to P , therefore it
may seem that the execution order of these two transitions is important. However, an output
transition places the message at the tail of the buffer, whereas an input transition removes
the message from the head of the buffer. Therefore, in both execution orders, the resulting
buffer content will be the same. There is no other action of another process that can be
dependent on an input transition of P . Hence, an input transition can indeed be tagged as
GoodForC1.

The task and decision transitions of process P can only access local variables of P . A
task updates its local variables, and a decision changes the current control point of P . Since
no other process can directly access the local variables nor the control point of process P , its
task and decision transitions are independent of all other transitions. So, we can tag all such
transitions as GoodForC1 provided that they appear in a software SDL process. However,
in an interface SDL process, which may have interface variables shared by the hardware
part, any transition that accesses (reads or assigns to) an interface variable is never tagged
as GoodForC1, see Section 3.

An output transition of P which sends a message to a process P0, is dependent on an
output transition of any process P ′ that also sends a message to P0. The reason is that
different execution orders of these transitions will result in a different contents for the input
buffer of P0, since the messages are queued in their arrival order. We therefore tag an output
transition from P to P0 as GoodForC1 only if there is no other process P ′ that outputs to
the same process P0.

Note that in some of these cases a transition can enable another transition. For example, an
output transition can enable an input transition, by providing a message in a buffer that was
previously empty. This doesn’t affect the reduction technique we use in our implementation,
in contrast to some other approaches, because the underlying definition of the independence
relation given in Section 2.1 is relaxed: it specifies that transitions may not disable another,
but does not prohibit enabling.

COMBINING SOFTWARE AND HARDWARE VERIFICATION TECHNIQUES 273

The next step is to find the visible transitions. We assume that the atomic propositions
of the LTL formula φ to be checked are expressed in terms of the control points and local
variables of processes (e.g., “Process P is at control point 1” or “Local variable x of process
P has value 5”). Hence, we tag a transition as Visible if it moves the control point of
a process to or from a control point mentioned in an atomic proposition, or it assigns to a
variable that is mentioned in an atomic proposition. Note that since visible transitions are
determined at compile time, and different properties contain different atomic propositions,
each LTL formula requires a different compilation run.

After completing the tagging with GoodForC1 and Visible, we perform a similar
tagging for condition C2′. This time we tag transitions with Sticky such that the set T̂
of transitions with this tag guarantees C2′. We analyze the types of transition data effects
to reduce this set as explained in Section 2.4. With this regard, we only consider input and
output transitions as having opposite effects on process input buffer queue, with respect to
a given signal A: output of signal A to process P is treated as having incrementing effect,
whereas input of signal A in P as having decrementing effect.

This completes the tagging steps. We call a control point of a process an ample control
point, if all local transitions from this control point are tagged as GoodForC1 and not tagged
as Sticky.

Let the system be composed of processes {P1, P2, . . . , PN }. We define for each process
Pi a new boolean variable amplei . Pi assigns true to amplei iff its current local state is
at an ample control point. All other processes can read the current value of amplei . We
also impose an artificial priority ordering on the set of processes, for example, as in the
list P1, P2, . . . , PN . Finally, we define the new enabling condition of a local transition in
a process Pi as follows: if the original enabling condition of the transition is a boolean
predicate p, it is changed to p ∧ (pC1C2′ ∨ pC0), where

pC1C2′ = ¬ample1 ∧ ¬ample2 ∧ · · · ∧ ¬amplei−1 ∧ amplei
pC0 = ¬ample1 ∧ ¬ample2 ∧ · · · ∧ ¬ampleN

As the name implies, pC1C2′ is used to guarantee conditions C1 and C2′. At a given
global state, there may be more than one ample process. Since the enabled transitions of
each ample process form an ample set at that state, we need to execute only one of them: it
is selected as the first ample process in the list of processes (P1, P2, . . . , PN) given in the
(artificial) priority order. If no process is ample at the current state, all enabled transitions
are executed. This is guaranteed by pC0, which is true in this case.

Our compiler generates the code in S/R. To implement the amplei variables we use the
selection variables of S/R. These are combinational variables which are not part of the state
and thus don’t take up space in the state vector during the search. Hence, the introduction
of amplei flags does not introduce any memory overhead.

5. Experimental results

We have evaluated our method with several examples specified in SDL and translated into
S/R using the static partial order reduction method described in this paper. Several case

274 KURSHAN ET AL.

studies have been also conducted by our colleagues at Bell Laboratories and partners at the
University of Texas at Austin. Below, four of our examples are described and verification
results of two other case studies are summarized.

All examples presented below were run on a VA Linux machine with Intel R© Pentium III
processor at 800 MHz and 2300 MB of memory available for a process.

The first example is a concurrent sorting algorithm, SortN. There is a communication
chain comprising N + 1 processes that sort N randomly generated numbers. One process
simply generates N random numbers and sends them to the next process in the chain. Each
process that receives a new number compares it with the current number it has and sends
the greater one to the next process. The last process receives only one number which is the
largest one generated by the first process.

The second example is a leader election protocol, LeaderN, given in [5]. It contains N
processes, each with an index number, that form a ring structure. Each process can only
send a signal to the process on its right and can receive a signal from the process on its
left. The aim of the protocol is to find the largest index number in the ring. The protocol is
verified with respect to all possible initial states, i.e. each process initially selects an index
number nondeterministically.

Each of these two examples is naturally scalable through the number of processes N . We
have attempted to verify each example for various indices N using both explicit search and
symbolic search, with and without static partial order reduction. We have omitted checks
for N if the same combination of methods did not work for N − 1: i.e. ran out of memory or
time. Table 1 presents the results of those experiments. The results for the sorting algorithm
suggest an evidence that in some cases, verification conducted by symbolic search combined
with static partial order reduction may outperform verification conducted by symbolic search
alone as well as verification conducted by explicit search combined with static partial order
reduction. However, this is not always the case, as suggested by the results for the leader
election protocol.

On these two examples, SortN and LeaderN, static partial order reduction implemented
in SDLCheck gives a reduction in the number of states that is as good as explicit search with
dynamic partial order reduction as implemented in Spin [11]. This is due to the fact that
in these two examples the majority of local loops in the component processes are broken
by visible actions and the remaining loops appear inter-dependent through output and
input actions in neighboring processes, cf. Section 4.2. Therefore, in these particular cases,
dynamic breaking the global state transition cycles (cf. condition C3 in Section 2.2) does
not give rise to a decisive advantage over breaking few local cycles by the sticky transition
analysis (cf. Algorithm 1 in Section 2.4). However, a general comparison between dynamic
and static partial order reduction has not been done here, and it is not known how the relative
performance of these two techniques would compare over a broad set of models.

Our next two examples are combined hardware/software systems. The verification results
for them are given by Table 2.

The third example is the alternating bit protocol, HW-ABP. The system was architec-
tured hardware-centric in [18]. Its core transmission part is given by a register transfer level
gatelist that may be expressed in Verilog or VHDL. Both sending and receiving end of the
hardware transmitter are controlled by their own drivers implemented in SDL+ as interface

COMBINING SOFTWARE AND HARDWARE VERIFICATION TECHNIQUES 275

Table 1. Experimental results for software verification.

Experiments and methods States Edges/bdd nodes Time(s) Memory(M)

Sort6

Explicit Killed after 84922 1300

+SPOR 2.50388e+6 122690120 2436 121

Symbolic 7.33483e+7 13623 4.2 3.3

+SPOR 2.50388e+6 33851 3.2 3.9

Sort8

Explicit Not run

+SPOR Killed after 59871 976

Symbolic 2.98508e+11 38641 23 7.1

+SPOR 1.12819e+9 80072 38 5.3

Sort10

Symbolic 2.07538e+15 68436 124 13

+SPOR 8.57609e+11 136978 21 7.5

Sort12

Symbolic 2.20155e+19 115731 547 19

+SPOR 9.08039e+14 180557 54 9.4

Leader4

Explicit 9197 13844 1.9 0.8

+SPOR 5571 6708 1.4 0.6

Symbolic 9197 141889 51 20

+SPOR 5571 218087 207 25

Leader5

Explicit 247276 429360 71 16

+SPOR 112217 143490 30 7.5

Symbolic 247276 1025010 8359 816

+SPOR 112217 1234204 15935 521

Leader6

Explicit 9212107 18285510 5828 664

+SPOR 2834882 3766265 1080 204

Symbolic Out of memory 8994

+SPOR Out of memory 10903

processes. Each driver serves one software user process written in SDL that implements,
respectively, either the initial sender or the terminal receiver of 1-bit messages. The system
has been verified using all four combinations of methods (see Table 2). In this case, static
partial order reduction provided no improvement. The reason is that the software part, al-
though comprising four SDL processes, has little concurrency, being split into two (sending

276 KURSHAN ET AL.

Table 2. Experimental results for co-verification.

Experiments
and methods States Edges/bdd nodes Time(s) Memory (M)

HW-ABP

Explicit 346318 47294 143 14

+SPOR 346318 47294 145 14

Symbolic 346318 10680 2.8 3.2

+SPOR 346318 10680 2.9 3.2

Elevator

Explicit Killed after 83544 47

+SPOR Killed after 126847 75

Symbolic Out of memory 9853

+SPOR 1.00593e+09 5102631 14403 415

and receiving) parts, each tightly coupled with hardware. The major role is conducted by
hardware. This explains the better performance of symbolic over explicit search.

The fourth example is a system of two elevators in a four story building. The system is
given in a software-centric architecture as follows. Elevator cabins have request buttons for
each floor, and on every floor there is an external elevator call button. When an external
call button is pressed, one of the cabins is assigned to go to that floor according to the
position of the cabins and the current selections of the people in the cabin. The system
requirement is that all requests are eventually serviced. The two cabins and the four external
call buttons are hardware components. Each cabin is modeled by a synchronous sub-system
of finite states machines (FSM’s) and each call button by a single FSM. The hardware
components are separated from each other. Each of them is conditioned on a common
clock and progresses along the clock pulses. On the software side, there is a distinct driver
for each hardware component, which is specified in SDL+ as an interface process. The
drivers support the communication between hardware components and the central software
process that handles requests from control buttons and assigns elevators. For this example,
symbolic search combined with partial order reduction completes the verification in four
hours consuming 415 MB of memory, whereas the three other (combinations of) methods
could not complete at all, see Table 2.

Now, we present the verification results from two case studies performed by our partners
from the University of Texas at Austin, Fei Xie and Natasha Sharygina. They developed
OO design models of two software systems using the ObjectbenchTM tool5 (which supports
an executable UML-style graphical interface that follows the Shlaer-Mellor method [25]).
Using a tool that translates OO design models into an intermediate form acceptable by
SDLCheck, they applied SDLCheck (which implements static partial order reduction) to
generate reduced S/R models of their designs and then Cospan to verify them.

The case study conducted by Natasha Sharygina is described in a detail in [24]. It is an
OO design model of the robot control system developed by the robotics research group at
the University of Texas at Austin. The design describes a simplified version of the system

COMBINING SOFTWARE AND HARDWARE VERIFICATION TECHNIQUES 277

that controls a robot with one arm. The arm consists of two joints and an end effector that
moves around and performs designated functions such as grabbing. Two major robotics
algorithms are captured in the design: arm control and fault recovery. In total, the design
model includes seven process components (called active objects). The active objects interact
by sending to each other messages of 31 different types. A typical active object consists
of 7 object states, at which messages sent to the object may be read. Fourteen different
properties that express functions of the system have been successfully verified. In all the
cases, the best performance has been shown by explicit search combined with static partial
order reduction. Depending on a property, verification times range from 336 seconds to
almost 70 hours, and memory consumption from 0.2 MB to 198 MB.

The case study conducted by Fei Xie is an on-line ticket sale system. The system design
includes four classes of active objects: a single dispatcher and ticket server, and multiple
agents and customers. When the dispatcher receives a purchase request from a customer,
it assigns an agent to serve the customer. The agent guides the customer through a ticket
purchase transaction with the ticket server. Agents are also responsible for keeping misbe-
having customers from corrupting the system. A simplified version of the system (with only
one agent and one customer) has been successfully verified with regard to five properties
under a general fairness assumption that guarantees that none of the active objects enabled
to execute is ignored. An example of the verified properties is: if the agent receives infinitely
many purchase requests then it provides infinitely many transaction services. In this case,
symbolic search combined with static partial order reduction performs in 1765 seconds
consuming 77 MB of memory, whereas explicit search also combined with static partial
order reduction spends 6682 seconds and 17 MB. Neither of the two methods, symbolic or
explicit, could finish the verification when applied alone, without partial order reduction.

6. Conclusion

We have presented a formal verification methodology that supports the combination of
hardware- and software-oriented model checking techniques. An important consequence
is to be able to run together symbolic BDD-based verification and partial order reduction.
Both techniques address the same problem of exponential computational complexity of
state space exploration, but use search algorithms that are intrinsically different, operating
in breadth-first and, respectively, depth-first manner. To merge these two quite different
techniques into one methodology, we apply them successively, in two different stages of
the verification process. Partial order reduction is handled completely in the compilation
phase, which generates a reduced model with the transition relation constrained by the
ample set conditions C0–C2′. Subsequently, the model checking phase can employ BDD-
based algorithms as well as any other reduction techniques with no change to the existing
verification engine.

We suggest the use of this method primarily for models with large state spaces that
cannot be handled by either reduction technique alone: symbolic evaluation without partial
order reduction or partial order reduction with explicit state enumeration. For such models,
combining symbolic evaluation with partial order reduction may make verification feasible.
Our experiments and case studies show that such models exist, for which the proposed

278 KURSHAN ET AL.

combined method may succeed, whereas either of its two component techniques applied
alone fails (runs out of memory or time) or performs too slowly. However, the experiments
also show that this combined method is not always the best. Characterization of the models
for which it suits better than other methods is an open problem.

One natural niche for the proposed verification methodology are software/hardware co-
design systems. Indeed, partial order reduction reflects (and reduces!) interleaving, com-
monly used to model software concurrency, and symbolic evaluation is important for hard-
ware verification, where partial order reduction has little or no effect. Our fourth example
in the previous section demonstrates not only the efficiency of the joint approach to reduc-
tion, but also the fact that even a simple co-design model may fall out of the scope of a
stand-alone verification technique. However, we expect that the application area is wider. It
may also include some software systems whose key issue is interprocess communication,
and complicated hardware designs with major communication components represented by
interleaving abstractions.

We have also presented a toolkit that supports the proposed verification methodology
in the area of software/hardware co-design. The toolkit comprises Verilog and VHDL
compilers for translation of hardware components, a tool that translates software parts and
generates a model incorporating partial order reduction, and finally a model checking engine
with support for both symbolic evaluation and explicit search. Although the implementation
is necessarily language specific, the basic ideas explained above are general enough to allow
re-implementations for different languages and/or BDD-based model checkers. In fact, a
re-implementation using ObjectbenchTM prior to the SDL interface has already been done
at Bell Laboratories in collaboration with Professor James C. Browne and his students at
the University of Texas at Austin.

Acknowledgments

We thank James Browne, Fei Xie and Natasha Sharygina for their valuable contributions
that assisted our method to mature, and the reviewers for their useful comments.

Notes

1. www.cadence.com, www.mentor.com, www.synopsys.com, etc.
2. The FormalCheckTM verification system is licensed by Lucent Technologies to Cadence Design Systems, Inc.
3. The example is given in the graphical syntax recommended by [23], but italic labels and dashed arrows are just

annotations.
4. SDL has two constructs, view and import, that enable a process to see a variable owned by another process. The

import construct is a shorthand of message passing that requests the owner process to send the current value of
the variable. The view construct, which provides direct read access, is an outdated feature of the first version of
SDL, not recommended (though allowed) by the standard [23]. Currently, we ignore these constructs, although
both can be handled by the method of Section 2.3.

5. ObjectbenchTM is owned by Scientific and Engineering Software, Inc.

References

1. R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer, and S.K. Rajamani, “Partial-order reduction in symbolic
state space exploration,” in O. Grumberg (ed.), Computer Aided Verification, 9th International Conference,

COMBINING SOFTWARE AND HARDWARE VERIFICATION TECHNIQUES 279

(CAV ’97) Proceedings, Vol. 1254 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1997, pp.
340–351.

2. B. Berger and P.W. Shor, “Approximation algorithms for the maximum acyclic subgraph problem,” in First
ACM-SIAM Symp. on Discrete Algorithms. Proceedings, 1990, pp. 236–243.

3. C.-T. Chou and D. Peled, “Formal verification of a partial-order reduction technique for model checking,”
in T. Margaria and B. Steffen (Eds.), Tools and Algorithms for the Construction and Analysis of Systems,
Second International Workshop (TACAS ’96) Proceedings, Vol. 1055 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 1996, pp. 241–257.

4. D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. MIT Press,
Cambridge, MA, 1989.

5. D. Dolev, M. Klawe, and M. Rodeh, “An O(n log n) unidirectional distributed algorithm for extrema finding
in a circle,” Journal of Algorithms, Vol. 3, No. 3, pp. 245–260, 1982.

6. P. Eades, X. Lin, and W.M. Smyth, “A fast and effective heuristic for the feedback arc set problem,” Information
Processing Letters, Vol. 47, No. 6, pp. 319–323, 1993.

7. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi, “On the temporal analysis of fairness,” in Conference Record
of the Seventh ACM Symposium on Principles of Programming Languages, 1980, pp. 163–173.

8. P. Godefroid and D. Pirottin, “Refining dependencies improves partial-order verification methods,” in
C. Courcoubetis (Ed.), Computer Aided Verification, 5th International Conference (CAV ’93) Proceedings,
Vol. 697 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1993, pp. 438–449.

9. R.H. Hardin, Z. Har’El, and R.P. Kurshan, “COSPAN,” in R. Alur and T.A. Henzinger (Eds.), Computer Aided
Verification, 8th International Conference (CAV ’96) Proceedings, Vol. 1102 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 1996, pp. 423–427.

10. Z. Har’El and R.P. Kurshan, “Software for analytical development of communication protocols,” AT&T
Technical Journal, Vol. 69, No. 1, pp. 45–59, 1990.

11. G.J. Holzmann, “The model checker Spin,” IEEE Trans. on Software Engineering, Vol. 23, No. 5, pp. 279–295,
1997.

12. G.J. Holzmann and D. Peled, “An improvement in formal verification,” in D. Hogrefe and S. Leue (Eds.),
Formal Description Techniques VII, Proceedings of the 7th IFIP WG 6.1 International Conference Bern,
Switzerland, 1994, pp. 197–211.

13. R.M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer Computations, Plenum
Press, New York, 1972, pp. 85–103.

14. R.P. Kurshan, Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach,
Princeton University Press, Princeton, NJ, 1994.

15. R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigün, “Static partial order reduction,” in B. Steffen (Ed.),
Tools and Algorithms for the Construction and Analysis of Systems, 4th International Conference (TACAS’98)
Proceedings, Vol. 1384 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1998, pp. 345–
357.

16. R.P. Kurshan, M. Merritt, A. Orda, and S. Sachs, “Modeling asynchrony with a synchronous model,” in P.
Wolper (Ed.), Computer Aided Verification, 7th International Conference (CAV’95) Proceedings, Vol. 939 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1995, pp. 339–352.

17. L. Lamport, “What good is temporal logic,” in R.E.A. Mason (Ed.), Proceedings of IFIP Congress, North
Holland, 1983, pp. 657–668.

18. V. Levin, E. Bounimova, O. Başbuğoğlu, and K. İnan, “A verifiable software/hardware co-design using SDL
and COSPAN,” in Proceedings of the COST 247 International Workshop on Applied Formal Methods in
System Design, Maribor, Slovenia, 1996, pp. 6–16.

19. V. Levin and H. Yenigün, “SDLCheck: A model checking tool,” in G. Berry, H. Comon, and A. Finkel (Eds.),
Computer Aided Verification, 13th International Conference (CAV 2001) Proceedings, Vol. 2102 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 2001, pp. 378–381.

20. K.L. McMillan, Symbolic Model Checking. Kluwer Academic Publishers, Boston, MA, 1993.
21. D. Peled, “Combining partial order reductions with on-the-fly model-checking,” Formal Methods in System

Design, Vol. 8, pp. 39–64, 1996.
22. D. Peled and T. Wilke, “Stutter–invariant temporal properties are expressible without the next-time operator,”

Information Processing Letters, Vol. 63, No. 5, pp. 243–246, 1997.

280 KURSHAN ET AL.

23. SDL92, “Functional specification and description language (SDL), ITU-T Recommendation Z.100,” 1993,
Geneva.

24. N. Sharygina, R.P. Kurshan, and J.C. Browne, “A formal object-oriented analysis for software reliability:
Design for verification,” in Heinrich Husmann (Ed.), Fundamental Approaches to Software Engineering,
4th International Conference (FASE 2001) Proceedings, Vol. 2029 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 2001, pp. 318–332.

25. S. Shlaer and S.J. Mellor, Object Lifecycles Modeling the World in States, Prentice-Hall, Englewood Cliffs,
NJ, 1992.

26. A. Valmari, “A stubborn attack on state explosion,” in E.M. Clarke and R.P. Kurshan (Eds.), Computer-Aided
Verification, 2nd International Conference (CAV ’90) Proceedings, Vol. 531 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 1990, pp. 156–165.

27. Verilog95, “IEEE standard hardware description language based on the VerilogTM hardware description
language, “IEEE Std 1364-1995,” 1996, New York.

28. VHDL93, “IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-1993,” 1994, New York.

