Equivalence Checking Using Abstract BDDs

S.Tha! Y.Luf

Computer Science DeptJr

M. Minea]L

E. M. Clarke!

Electrical and Computer Engineering Dep»ti

Carnegie Mellon University, Pittsburgh, PA 15213
sjha, yuanlu, marius, emc@cs.cmu.edu*

Abstract

We introduce a new equivalence checking method based
on abstract BDDs (aBDDs). The basic idea is the follow-
ing: given an abstraction function, aBDDs reduce the size of
BDDs by merging nodes that have the same abstract value.
An aBDD has bounded size and can be constructed without
constructing the original BDD. We show that this method
of equivalence checking is always sound. It is complete
for an important class of arithmetic circuits that includes
integer multiplication. We also suggest heuristics for find-
ings suitable abstraction functions based on the structure of
the circuit. The efficiency of this technique is illustrated by
experiments on ISCAS’85 benchmark circuits.

1 Introduction

Formal verification is becoming extremely important be-
cause the algorithmic complexity and therefore the size of
VLSI circuits keeps increasing. Binary decision diagrams
(BDDs) [1] have proved to be critical for the success of many
of these verification techniques. BDDs can handle medium
size circuits very efficiently. Numerous techniques have
been developed in order to handle larger circuits [2, 5, 7].

Although these methods are useful, none provides an
upper bound for the BDD size. Thus, the node explosion
problem for BDDs still exists. The Chinese remainder the-
orem was used by Clarke, Grumberg and Long in [3] to
reduce the BDD size in the verification of a sequential mul-
tiplier. Kimura [4] has extended this idea and introduced
residue BDDs, which have bounded size. He has used them

*This research was sponsored in part by the National Science Foun-
dation under grant no. CCR-9217549, by the Semiconductor Research
Corporation under contract 96-DJ-294, and by the Wright Laboratory,
Aeronautical Systems Center, Air Force Materiel Command, USAF, and
the Advanced Research Projects Agency (ARPA) under grant F33615-93-
1-1330.

1063-6404/97 $10.00 © 1997 IEEE

successfully to verify a 16 x 16 combinational muitiplier.
In [6] Ravi et al. discuss how to choose a good modulus
and also show how to build the residue BDD for complex
circuits involving function blocks.

In this paper, we generalize the idea of residue BDDs and
define a new data structure called an abstract BDD (aBDD).
Given an abstraction function, aBDDs reduce the size of
BDDs. by merging nodes that have the same abstract value.
aBDDs have bounded size and can be built directly from
combinational circuits. Residue BDDs are a special case of
aBDDs. In fact, our results explain exactly when residue
BDD techniques work.

There are several advantages of aBDDs over residue
BDDs. Residue BDDs are particularly well suited for arith-
metic circuits, but do not work well for control circuits. As
our experimental results show, the use of other abstraction
functions leads to significantly better results for control cir-
cuits. In addition, aBDDs provide designers the flexibility
to choose abstraction functions based on the nature of the
circuits, for example by taking into account symmetry. This
paper demonstrates that aBBDDs can be used as a general
framework for applying abstraction to BDDs.

2 Abstract BDDs

Let B = {0,1}. B™ is the set of 0-1 vectors of size n. A
0-1 vector of size ¢ will be denoted by & = (o, - - -,.z',-_l).
The concatenation of vectors & and § is written as & - ¢, For
example, (0,0,1) - (1,0) is the vector (0,0,1,1,0). The
symbol 6,- represents the vector of all zeroes of length s.

An abstraction function is a function « : B® — D,
where D is some arbitrary range. In general, an abstraction
function may map multiple values of the domain B” to a
single value in the range D. Usually the range D will be
much smaller than the domain B™. The size of D is denoted
by | DJ. o

An abstraction function &' : B* — D induces an equiv-
alence relation on vectors in B': for &, 7 € B definex = y

iffa’(z) = o' (y). The equivalence relation = partitions the
0-1 vectors into equivalence classes. We choose a unique
representative from each equivalence class and construct a
representative function h* such that h?(z) is the unique rep-
resentative in the equivalence class of . From the initial
abstraction function o we have thus generated a function
k% : Bt — B'. If n is the length of #, then we write (&)
to denote h™(Z). It is easy to see that h is idempotent, i.e,
h(h(Z)) = h(Z). Next, we define what it means for the
abstraction function function h to be consistent.

Definition 1 An abstraction function & : | J] B/ — J} B

is consistent iff for all 1 < i < n, for all Z,§ € B’ the
following implication is true.

h(F) = h(§) = VZ[h(E 2) =h(F D)

For example, consider the abstraction function b : U;' B —

Uj B induced by a linear abstraction function o, i
0,---,n — 1 defined below:

H
a'(zg, -+, 2) = ija:j
s

where b; (0 < j < 1) are real numbers. It is not hard to
see that h is a consistent abstraction function. As a different
example, the function that computes the residue of a positive
integer with respect to a prime number is also a consistent
abstraction function (we assume the usual conversion be-
tween integers and bit vectors). The consistency property
will permit the same abstraction mapping to be applied at
different levels in a BDD. In the remainder of this paper we
will assume that all abstraction functions are both consistent
and idempotent.

Let f : B™ — B be an n-argument boolean function, An
abstraction function i ;: B®™ — B" induces a transformation
on boolean functions according to the following relation.
We denote the transformed function as f}, and define it as
follows:

In foh

Lemmal Let f,p,q : B® — B be boolean functions, ®
any logical operation, and h : B® — B" be an abstraction

function. If f = p® g, then fi, = p, © g.

Proof: Let £ € B" be an arbitrary vector. We have the
following equations:

fn(%)

The result follows. O
Next, we show how the above results can be applied when
representing boolean functions by binary decision graphs.

333

Definition 2 A levelized binary decision graph (levelized
BDG) with n levels is a 7-tuple (V,left,right,level
,to, t1, root), where

e V is the set of nodes.
level : V = {0,---,n}.

left : (V-{to,t1}) — V is the left child function with
restriction: level(v) = level(left(v)) — 1.

right : (V-{to,t1}) — V is the right child function
with restriction: level(v) = level(right(v)) — 1.

to € V is the zero node with level(v) = n.
ty € V is the one node with level(v) = n.

root € V is the distinguished root node and
level(root) = 0.

Forall v € V-{root, 19,11}, 1 < level(v) < n — 1.

Given a levelized BDG T, we define a function nodep :
Ui=; B' = V. Letp € B be a 0-1 vector or path of length
i. noder (p) = v iff we get to node v by following the path
p from the root. Notice that a levelized BDG T' corresponds
to a boolean function 5(T) : B® — B in the following
manner:;

*b(T)((w1, -
*b(T)((y1, -

Given an abstraction function h : B® — D, we show
how to construct an abstract levelized BDG from a given lev-
elized BDG. Without loss of generality, assume we have cho-
sen the representative x of an equivalence class to be the lexi-
cographically least element in that equivalence class. There-
fore, if < denotes lexicographical ordering, and h(z) = =,
then 2 < y for all y such that h(z) = h(y).

The algorithm that constructs an abstract levelized BDG
is given in Figure 1. Its arguments are anode v € V and a
vector path € Ug‘:oB" representing the path from the root to
that node. The initial call to the algorithm is DFS (root, ¢),
where ¢ denotes the empty vector. The algorithm maintains
acache of pairs (v, path), which is initially empty. The rou-
tine lookup_cache(p’) returns the node v’ such that (+/, p')
is in the cache.

<y yn)) = OifandET((yl’ .. .,yn)) =tp.

.,yn)) =1 ifandeT((yl, .. ’yn)) — tl-

Lemma2 Let T be a levelized BDG, h : B® —+ B" be
an abstraction function, and T} be the corresponding ab-
stract levelized BDG as constructed by the DFS algorithm.
Then the boolean function b(T}) correspondingto T}, is the
transformation under h of the boolean function b(T") corre-
sponding to 7:

b(T) 5(T)n

b(T)oh

function DFS(v, path)
p' = h(path);
if p’ # path
v’ = lookup.cache(p');
return v’;
else
if nonterminal(v)
left{v) = DFS(left(v), path : (0));
right(v) = DFS(right(v), path - (1));
endif;)
insert_cache(p', v);
return v;
endif

Figure 1. Abstraction of levelized BDG

Proof: 'We prove this lemma by induction on the length of
path p. First, the rootis considered when p = e. itis trivial to
see that noder, (p} = noder (A(p)) = root. Let us assume
that noder, (p) = noder(h(p)) is true for length(p) = .
Then consider a path p - y where y € B. Itis easy to see that
both noder, (p - y) and noder (h(p - y)) are at level i + 1.
There are two cases:

e p-y = h(p-y), from program in Figure 1, we know
that
noder, (p - y) = noder (h(p - y))

e p-y# h(p:y), from induction hypothesis, we have
noder, (p) = noder (h(p))
Furthermore according to program in Figure 1,
noder, (p -y) = noder (h(h(p) - v))
Since h is idempotent, h(p) h(h(p)) implies

hip -) h(h(p) - y) according to the definition
of consistent function. Thus, we have

noder, (p - y) = noder(h(p - y)).

By induction, this is true for the last level, which
implies
b(Th) = b(T) o h

0

Given a levelized BDG T, let n; be the number of nodes
7 = 1

v € V whose level is 7. The width of T'is max;_; n;.
Lemma 3 Given an abstraction function h ; B® — D and
a levelized BDG T, the width of T}, is less than or equal to
|.D).

334

Proof: Let p; and p» be two paths of length ¢ such
that h(p1) = h(pz). In the levelized BDG T},, we have
noder, (p1) = noder, (p2). Thus, if two paths p; and p,
agree on the abstraction value; then they lead to the same
node. Hence, at each level the number of nodes in the lev-
elized BDG T} is bounded by the size of the range of A.
|

Let ® be an arbitrary operation on boolean functions.
The lemma given below states that abstraction of levelized
BDGs can be performed compositionally.

Lemma 4 Assume that we have three levelized BDGs T,
T, and T2. Ifb(T) = b(I") ® b(T?), then we have the
following equation:

b(Ty) b(TY) ® b(T?)

Proof: The proof follows from the followihg equations:

b(Th)

b(T), (By Lemma 2)
b(T")s @ b(T?)s (By Lemma 1)
b(Th) @ b(T?) (By Lemma 2)

Figure 2. BDD and levelized BDD for (zo V z;)

Levelized BDDs are obtained from levelized BDGs in
the following manner: Given a levelized BDG T', we merge
two nodes v and v’ (whose level is the same) iff the subtrees
rooted at them are isomorphic. Reduced ordered BDDs, on
the other hand, add an extra level of optimization because
redundant nodes are removed, as described in [1]. For ex-
ample, Figure 2 gives the BDD for the function (zo V&) and
the corresponding levelized BDD. Because of the merging
of isomorphic subtrees, we must modify algorithm DFS.
We call our new algorithm BDD_DFS and it is described in
Figure 3. In the algorithm given in Figure 3, Sub(v) denotes
the subtree rooted at the node v. Sub(v) &~ Sub(v') means
that the trees rooted at v and v’ are isomorphic.

Given a levelized BDD T', the BDD T}, obtained from
algorithm BDD_DFS is called an abstract BDD or aBDD.
Notice that the aBDD obtained in this manner is also lev-
elized. The definition of aBDDs and the properties proved
in this chapter can be easily generalized for different ab-
straction functions used -at each level.

function BDD_DF'S(v, path)
P’ = h(path);
if p’ # path
v’ = lookup_cache(p');
return v';
else
if nonterminal(v)
left(v) = DFS(left(v), path - (0));
right(v) = DFS(right(v), path - (1));
if there exists v; in cache such that Sub(v) = Sub(v;)
return vy;
endif;
endif;
insert_cache(p’, v);
return v;
endif

Figure 3. Modified DFS of levelized BDDs

3 Uniqueness of Representation

Assume that we have two boolean functions f and ¢ and
let Ty and T, be the levelized BDDs for f and g. Given an
abstraction function h, h(Ty) # h(T,) implies that f # g,
but h(Ty) = h(Ty) does not necessarily imply that f = g.

In other words, aBDDs are not canonical. In this section we

prove that with some restrictions we can obtain the canon-
icity property for a group of functions.

A set of abstraction functions {hi, - - -, hp}, where h; :
B™ — B" for 1 < i < pis said to preserve the domain B"
iff given two vectors & and § such that ¥ # § there exists a
k such that ki (Z) # hi(%). As an example, for n = 32, the
abstraction functions corresponding to taking the modulus
withrespect to 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 preserve the
domain {0, 1}32. This follows from the Chinese remainder
theorem.

Let f : B® — B" beafunctionand h : B* — B" bean
abstraction function. Given a function f : B® — B", we
represent it by a vector of n boolean functions (fy, - - -, fn).
Assume that we are given a function f and a set of p ab-
straction functions {hy, - - -, h,} where h; : B — B™, Let
(f1,-- -, fa) be the array of boolean functions correspond-
ing to f. Let T*7 be the levelized BDD corresponding to
the boolean function f; o hj. Let M(f) be a m x p ma-
trix of aBDDs such that M(f); ; = T"/. The matrix is
schematically shown below:

Tl)1 Tl P
T2,l Tz,p
Tm,l Tm:P

The theorem given below proves that under certain con-

335

ditions M (f) is a canonical representation for f.

Theorem 1 Assume that f : B* — B™® and g : B® — B"
are two functions. Let (fi,---, f) and (g1, -, gn) be the
corresponding arrays of boolean functions. Also assume that
h; : B* =5 B™ (1 < i < p) is a'set of abstraction functions
that preserves the domain B®, If wehave h;o f = h;o foh;
and h;jog = h;ogoh;foralll < i< p,then f = giff
M(f) = M(g).

Proof

It is obvious that if f = g, the corresponding matrices
are equal, M (f) = M(g). Consider the case f # g. This
means that there exists a vector @ € B” such that f(a@) #
g(@). Since the set of abstraction functions h; preserves the
domain B", there exists a k, where hi(f(2)) # hx(9(@)).
From the hypothesis, we conclude that hy(f(hi(2))) #
hi(g(hx(a))), and therefore, f(hi(a@)) # g(hx(d)). Since
both f and g are arrays of boolean functions, there must be a
j for which f;(hx (@) # g;(h«(@)). This means that f; o hy
is different from g; o hj and therefore M (f) # M(g). O

As an example, consider the function mult : B® — B"
which multiples two integers with % bits (we are assuming
no overflow). For a vector Z = (zo,...,%i-1) € B’ we
define val(%) = Z;;:, ;%27 . The function mult is defined
by the following equation:

val(mult(Z)) val(zo,+++,z3-1) xval(zg, -+, 2p)

Assume that we have m relatively prime positive integers
P1,y..-,Pmsuchthatp;-py---pp > 2", Leth; : B® — B
be the abstraction function corresponding to taking the
residue with respect to p;. By the Chinese remainder theo-
rem, the set of abstraction functions {hy, - - -, hy, } preserves
the domain B”. Moreover, h; o f = h; o f-o h; because

(z * y) mod p; ((= mod p;) * (y mod p;)) mod p;

for any positive integer p (* denotes the multiplication of
integers). Translated into our notation the equation given
above becomes

hiomult = h;omultoh;

Therefore, mult satisfies the condition in the hypothesis
and the theorem applies to this case. More generally, this
theorem will be also true when f satisfies h; o f = f o h;.

4 Equivalence checking using aBDDs

Because of their bounded size, aBDDs can be used to
verify the equivalence of large circuits. In general, residue
functions are good abstractions for arithmetic circuits. Sym-
metric and linear functions tend to work better for control

logic. If the circuit has symmetric inputs, a:symmetric
abstraction function should definitely be used. These con-
clusions are supported by the experimental data in section
5. The overall procedure is as follows.

1. Given a circuit, choose a set of appropriate abstraction
functions.

2. Select an abstraction function i out of a set of ab-
straction functions. This set will be provided based on the
nature of the circuit.

3. Build aBDDs for the specification and the implemen-
tation circuit using the abstraction function h.

4. Compare the two aBDDs that are obtained forspecifi-
cation and implementation. If they are different, an error is
detected. Otherwise, choose a different abstraction function
from the set and repeat step 3 with a-different abstraction
function. ' ‘

In general, there is no procedure to select a set ‘of ab-
straction functions that*will detect all errors in a-circuit.
Nevertheless, we believe that our methodology can be ex-
tremely useful in ‘practice, since an initial design is much
more likely to contain errors than to be correct.

Next, we give a description of our algorithm. Since our
algorithm to build an aBDD assumes that-we are working
with -a levelized BDD, we have to levelize a BDD before
we apply our abstraction algorithm. For example, assume
that f = p A ¢ and that we have already built the aBDDs
for p and ¢ (with respect to the abstraction function A). Let
us call these aBDDs ~(7,) and h(T,). Next, we build the
BDD corresponding to k(1) A k(Ty). Finally we levelize
the BDD and apply our abstraction algorithm to obtain the
aBDD for f. :

We use a simple example to illustrate the algorithm.
Assume that we have an abstraction function h for the circuit
in Figure 4. The aBDD associated with z is h(73). At
the beginning, assume that we have aBDDs for the inputs
a,b, ¢, d. By performing the nand operation, we form the
BDD T, = —[h(T4) A h(Tb)]. Next we perform abstraction
on the levelized BDD of T, and obtain the aBDD h(T).
The same procedure is performed on f. After we. obtain
aBDD:s for e and f, we compute the aBDD for the output g
by using the same method.

5 Experimental Results

We have implemented our algorithm in C. Our experi-
ments were performed-on a Sun SPARC 10 workstation with
200 Mbytes of memory: The experiments were performed
on the ISCAS’85 benchmark circuits. Faults in the circuit
were injected one by one by selecting a stuck-at fault on one
input of an arbitrary gate.- Table 1 compares our method
with ordinary BDD equivalence checking. In the table, two
abstraction functions are used. - One is the symmetric ab-

336

lcf

}_
b

Figure 4. Building an aBDD from a circuit

-(D

straction function
;
at(zo, - -+,) :ij,i:0,~-~n——1
i=0
and the second one is the residue function -

i
o (zo, - -+, zi) IZZJ:L‘J- modn,i=0,---n~—1
i=0 '

In Table 1, Det Errs is the number of faults detected
by these three methods, and Max.# Nodes is the maximum:-
number of BDD nodes that need to be held in memory, which
is usually much larger than the final BDD size. Avg. Time is
the average time to detect a design error. The OBDD results
forc2670, c5315, 6288 .and c7552 are notreported because
they exceeded the memory limit.

The experimental results show that using aBDDs it is
possible to detect-a high percentage of design.errors (be-
tween 40% and 90% of the errors are detected using sym-
metric abstraction functions alone. The.reduction in BDD
size forsome circuits is over two orders of magnitude. Since
the size of aBDDs is bounded, this reduction will be much
more significant in real industrial circuits. For most of the
circuits, residue abstraction functions do not detect as many
errors as symmetric abstraction functions. We choose the
number of variables as a modulus because both symmetric
and residue abstraction functions.produce BDDs of similar
size. The results support our argument that residue functions
may not be a good abstraction for control circuits.

6 Conclusion

In this paper, we introduce a general framework for ap--
plying abstraction to BDDs. Abstract BDDs (aBDDs)-are
of bounded size and can be constructed directly from the
circuit, without first generating the original BDDs. This
technique makes itpossible to show inequivalence of combi-
national circuits. If the aBDDs for two circuits are different,
then the circuits correspond to two different boolean func-
tions. On the other hand, if the two aBDDs are identical, the

circuits | Errs Det Errs Max # Nodes Avg.Time

OBDD | Symm | Resid OBDD | Symm Resid | OBDD Symm Resid
c432 50 50 50 33 4712 4604 3902 1.15 7.94 19.70
c499 50 50 40 28 95745 9481 27121 | 2274 16.72 48.64
c880 50 50 28 7| 637338 7705 4999 | 138.25 58.17 | 180.56
c1355 50 50 40 28 96357 9497 27476 | 2549 4493 | 129.48
¢1908 50 48 40 36 70196 6274 15838 | 35.95 22.82 61.86
€2670 10 || unable 5 2 - | 132593 | 774009 - | 5449.37 { 5073.17
€3540 50 50 24 16 | 1522988 9927 8267 | 299.89 109.61 | 379.06
¢5315 10 || unable 10 3 — | 208795 | 234716 - | 4618.01 | 10052.3
c6288 10 || unable 6 6 - 7317 38 - 86.52 61.20
c7552 10 || unable 9 10 - | 366462 | 2301523 — | 11963.65 | 18405.8

Table 1. Comparison of equivalence checking using OBDDs and aBDDs

circuits may still be different. In spite of this lack of com-
pletess, experimental results show that the technique is able
to find a suprisingly large number of errors in practice. This
is important because circuits tend to contain errors much
more frequently than they are correct. Moreover, we iden-
tify an important class of functions for which this technique
is complete. This class includes many common arithmetic
circuits including integer multiplication. We are currently
investigating probabilistic techniques for estimating the er-
ror coverage obtained using this method.

References

[1] Randal E. Bryant, “Graph-Based Algorithms for
Boolean Function Manipulation”, IEEE Trans. on
Comput., Vol. C-35, No.8, pp.677-691, Aug. 1986.

[2] Karl S. Brace, Richard L. Rudell, Randal E. Bryant,
“Efficient Implementation of a BDD Package”, 27th

Design Automation Conference, pp. 40-45, 1990.

[3] Edmund M. Clarke, Orna Grumberg, David E. Long,
“Model Checking and Abstraction”, ACM Transac-
tions on Programming Languages and System, Vol.16,

No.5, pp.1512-1542, Sept. 1994.

[4] Shinji Kimura, “Residue BDD and Its Application to
the Verification of Arithmetic Circuits”, 32nd Design

Automation Conference, 1995.

[5] Hiroyuki Ochi, Koichi Yasuoka, Shuzo Yajima,
“Breadth-First Manipulation of Very Large Binary-
Decision Diagrams”, Proc. Intl. Conf. Comput. Aided

Design, pp.48-55, 1993.

Kavita Ravi, Abelardo Pardo, Gary D. Hachtel, Fabio
Somenzi, “Modular Verification of Multipliers”, For-
mal Methods in Computer-Aided Design, pp.49-63,
Nov. 1996.

(6]

337

[7] Richard Rudell, “Dynamic Variable Ordering for Or-
dered Binary Decision Diagrams”, Proc. Intl. Conf.
Comput. Aided Design, pp.42-47, 1993.

