
Arrayed instantiation and generate constructs

Opriţoiu Flavius
flavius.opritoiu@cs.upt.ro

November 4, 2024



Introduction

Objectives:

▶ Build arrayed instances and configure generate blocks

For reading:

 ”Advanced Module Instantiation”, Laboratory notes [AMI**]

Arrayed instantiation shorthand to constructing multiple instances
of the same module.

Generate blocks provide a more flexible approach to creating large
numbers of instances with a more complex interconnection
structure.

© 2024 Opriţoiu Flavius. All Rights Reserved.



Arrayed instantiation

Shortcut to creating several instances of the same module, when
all instances are connected to the same signals. Using arrayed
instantiation for designs with more complex interconnections can
become tedious.

The Verilog implementation bellow constructs a BCD8421 to E3
converter for k-digit numbers, using k instances of the 4-bit adder,
add4b.

1 module bcde3conv #(
2 paramete r k = 4 //number o f d i g i t s
3 ) (
4 i n pu t [4* k=1:0] bcd , //bcd i npu t number
5 output [4* k=1:0] e3 // e3 output number
6 ) ;

8 add4b cnv [ k=1:0] ( . x ( bcd ) , . y (4 ’ d3 ) , . z ( e3 ) ) ;
9 endmodule

The arrayed instantiation in line 8 builds k instances of add4b.
© 2024 Opriţoiu Flavius. All Rights Reserved.



Arrayed instantiation (contd.)

Arrayed instantiation format:

module-name instance_name [top-index:bottom-index]

(.p(s), ...)

If the width of the signal s equals the number of instances times
the width of port p, then s will be partitioned equally into the
number of bits of port p, each partition being assigned to one of
the instances in the array. For the bcde3conv example, input bcd is
partitioned into 4 bits, each group being assigned to one of the k
instances (similarly for output e3).

If the width of the signal s equals the width of port p, then s is
connected to all instances in the array. For bcde3conv, the value of
3 on 4 bits, to be added to each BCD8421 digit, has the same
width as port y of the adder, thus it is connected as it is to all k
instances.
© 2024 Opriţoiu Flavius. All Rights Reserved.



generate blocks

A more versatile mechanism for creating multiple instances of an
object within a module. The following object types can be
generated:

▶ one or several modules

▶ any number of initial/always blocks

▶ one or several continuous assignments

▶ any number of signal declarations

The generated instances are constructed programmatically inside a
generate block, delimited by the generate and endgenerate

keywords. The generate block makes use of the for loop for
controlling the instances creation. The index control variable used
by this loop is of genvar type, a special non-negative valued
integer.

For finer control over the instantiation, the if ... else and
case instructions can be used inside the generate block.
© 2024 Opriţoiu Flavius. All Rights Reserved.



generate blocks (contd.)
The for loop inside the generate block:

▶ uses a genvar variable as loop index

▶ has its content within a named begin ... end block

The previous BCD8421 to E3 converter is re-written bellow:

1 module bcde3conv #(
2 paramete r k = 4
3 ) (
4 i n pu t [4* k=1:0] bcd ,
5 output [4* k=1:0] e3
6 ) ;
7 gen e r a t e
8 genvar i ;
9 f o r ( i =0; i < k ; i=i +1) beg in : v e c t

10 add4b uconv (
11 . x ( bcd [ i *4+3: i *4 ] ) , . y (4 ’ d3 ) , . z ( e3 [ i *4+3: i *4 ] )
12 ) ;
13 end
14 endgene ra t e
15 endmodule

© 2024 Opriţoiu Flavius. All Rights Reserved.



generate blocks (contd.)

The named begin ... end block starts in line 9, where begin is
followed by a valid Verilog identifier (vect).

Inside the named block, a single instance is created in each
iteration, denoted by a different Verilog identifier (uconv).

The port association makes use of loop index variable i for
grouping together 4 consecutive bits from bcd input and 4 from e3
output. The consecutive bits are selected using the part-select
expression [i ∗ 4 + 3 : i ∗ 4] applied to both ports.

The value of 3, represented on 4 bits, is used for the second
operand of the k instances of add4b module.

© 2024 Opriţoiu Flavius. All Rights Reserved.



Solved problem
The input preprocessing unit of a cryptographic application

Exercise: Construct the datapath for the input preprocessing unit
(IPU, or simply the unit) of a 256-bit Secure Hash Algorithm 2
(SHA-2) unit (see [FIPS15], section 5.1.1).

Solution: The unit receives the message at input, pads it and
delivers it at the output. At the input the message is received in
packets of 64 bits. At the output the padded message is delivered
in blocks of 512-bits.

Message padding: Considering a message of l bits (l being a
multiple of 64), padding appends, in order:

▶ one bit of 1

▶ k bits of 0s, so that l+ 1 + k≡ 448 (mod 512)

▶ the value of l represented on 64 bits

© 2024 Opriţoiu Flavius. All Rights Reserved.



Solved problem (contd.)
Preprocessing phase example

Consider the 8-bit ASCII message ”abcd0123” (l= 64 bits) is sent
to the unit. The message is appended one bit of 1 followed by
k= 383 bits of 0, followed by the value 64 represented on 64 bits.
The 512-bit block output of the unit is represented bellow (digits
are in hexadecimal):

6162636430313233 80000...0000 0000...0000 0000...0000 0000...0000 0000...0000 0000...0000 0000...0040
|←−−−−−−−−−−→| |←−−−−−−→| |←−−−−−−→| |←−−−−−−→| |←−−−−−−→| |←−−−−−−→| |←−−−−−−→| |←−−−−−−→|

”abcd01234”
1 followed
by 63 0s

64 bits
of 0s

64 bits
of 0s

64 bits
of 0s

64 bits
of 0s

64 bits
of 0s

message
size, l

|←−−−−−−−−−−→| |←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→| |←−−−−−−→|
the message

packet
6 padding packets: one packet having the msb of 1 followed by

63 bits of 0 and 5 packets having 64 bits of 0
packet
with l

For the 72 ASCII characters message ”Dear All, I am writing to
give you an update on your submitted proposal.”, the unit would
outputs 2 512-bit blocks.

© 2024 Opriţoiu Flavius. All Rights Reserved.



Solved problem (contd.)
Datapath design for the unit

As long as the message is not completely received, in each clock
cycle the unit obtains a new 64-bit message packet; ⇒ 8 such
packets form a 512-bit block. These 8 packets are stored in a
register file, regfl, with 8 registers, 64-bits each.

Because the padded message’s length is multiple of 512 and l is
multiple of 64: ⇒ the length of the padding data (the bit of 1, k
bits of 0s, l on 64 bits) is multiple of 64 bits. It follows that the
padding data can be split in 64-bit packets and stored in the
register file.

© 2024 Opriţoiu Flavius. All Rights Reserved.



Solved problem (contd.)
Datapath design for the unit

For message ”abcd0123”, the splitting of the padding data into
64-bit packets is depicted bellow:

6162636430313233 80000...0000 0000...0000 0000...0000 0000...0000 0000...0000 0000...0000 0000...0040
|←−−−−−−−−−−→| |←−−−−−−→| |←−−−−−−→| |←−−−−−−→| |←−−−−−−→| |←−−−−−−→| |←−−−−−−→| |←−−−−−−→|

”abcd01234”
1 followed
by 63 0s

64 bits
of 0s

64 bits
of 0s

64 bits
of 0s

64 bits
of 0s

64 bits
of 0s

message
size, l

Thus, there are 4 types of packets operated by the unit’s datapath:

1. message packet(s)

2. padding packet: containing a bit of 1 followed by 63 of 0s

3. zero packet(s): containing 64 bits of 0s

4. message length packet: value of l on 64 bits

The message’s length, l, is calculated inside the unit using a 64-bit
register, incremented by 64 each time a new packet is stored in
regfl.
© 2024 Opriţoiu Flavius. All Rights Reserved.



Solved problem (contd.)
Datapath design for the unit

c_up

cntr#(3)
q

rgst#(64)
d

pktmux

pkt

mgln_pkt

zero_pkt

pad_pkt

o

+

64

regfl

d

s

we

q
512

364

64

64

64

64

pkt

blk

q

pad_pkt

zero_pkt

mgln_pkt

clr

ld

clr

msg_len 3

st_pkt

clr

idx

rgst module is available here while cntr module is available here

© 2024 Opriţoiu Flavius. All Rights Reserved.

http://staff.cs.upt.ro/~opritoiu/ca/code/rgst.v
http://staff.cs.upt.ro/~opritoiu/ca/code/cntr.v


Solved problem (contd.)
Datapath design for the unit

The datapath has the following inputs, as seen on the diagram
from previous slide:

1. pkt: on which it receives message packets

2. st pkt: activates storing of current packet

3. clr: clears the counter and the 64-bit register storing l

4. pad pkt: active if the current packet is a padding one

5. zero pkt: active if the current packet is a zero packet

6. mgln pkt: active if the current packet is message’s length, l

The datapath has the following outputs:

1. idx: next available address in regfl; it also indicates how many
packets were stored so far in the current block

2. blk: the output 512-bit block

© 2024 Opriţoiu Flavius. All Rights Reserved.



Solved problem (contd.)
The register file

e

ld

ld

ld

d
e
c
#
(3
)

o[0]

o[1]

o[7]

rgst#(64)

d

we

q

64

rgst#(64)

rgst#(64)

ss

64

64

64

512

d

q

d

q

d

q

clr

clr

clr

q
[5
1
1
÷
4
4
8
]

q
[4
4
7
÷
3
8
4
]

q
[6
3
÷
0
]

regfl

3

The dec#(3) is an instance of the dec module available here ,
parameterized with the value of 3 for the selection line’s width.
© 2024 Opriţoiu Flavius. All Rights Reserved.

http://staff.cs.upt.ro/~opritoiu/ca/code/dec.v


Solved problem (contd.)
The register file

The register file, regfl assembles 8 consecutive packets received on
input d into a complete blocks. The next available address in the
register file is provided by a 3-bit counter to input s and storage of
the packets is activated by the we, enable input.

The register file’s output, q, is constructed by concatenating the
content of al internal registers, with the register at the address 0
providing the most significant bits and the register at address 7
providing the least significant bits of the output.

© 2024 Opriţoiu Flavius. All Rights Reserved.



Solved problem (contd.)
The packet multiplexer

pktmux
pkt

msg_len

mgln_pkt

zero_pkt

pad_pkt

o

64

64

64

The packet ”multiplexer”, pktmux, provides the current packet to
be stored in the register file. Because there are 4 types of packets
(see slide 11), pktmux has 3, mutually-exclusive control inputs:

1. pad pkt: pktmux delivers a padding packet at its output

2. zero pkt: it delivers a zero packet

3. mgln pkt: it delivers the message length packet, provided by
the 64-bit register to pktmux’s input ms len

If none of the 3 control lines are active, pktmux delivers message
packets, received on its input pkt.© 2024 Opriţoiu Flavius. All Rights Reserved.



References

[AMI**] Advanced Module Instantiation. [Online]. Available:
http://www.eecs.umich.edu/courses/eecs470/OLD/w14/labs/
lab6 ex/AMI.pdf (Last accessed 17/04/2016).

[FIPS15] National Institute of Standards and Technology, “FIPS
PUB 180-4: Secure Hash Standard,” Gaithersburg, MD
20899-8900, USA, Tech. Rep., Aug. 2015. [Online]. Available:
http://dx.doi.org/10.6028/NIST.FIPS.180-4 (Last accessed
06/04/2016).

© 2024 Opriţoiu Flavius. All Rights Reserved.

http://www.eecs.umich.edu/courses/eecs470/OLD/w14/labs/lab6_ex/AMI.pdf
http://www.eecs.umich.edu/courses/eecs470/OLD/w14/labs/lab6_ex/AMI.pdf
http://dx.doi.org/10.6028/NIST.FIPS.180-4

