
Handshake signaling for data transfer

Opriţoiu Flavius
flavius.opritoiu@cs.upt.ro

November 18, 2024



Introduction
Objectives:

▶ Use handshake signaling for reliable data exchange between
digital components

For reading:

� Chris Fletcher: ”EECS150: Interfaces: ”FIFO” (a.k.a.
Ready/Valid)”, [Flet09c]

Handshake signaling permits rate adaption for the case of data
transfers. For brevity, consider the case of two sequentially,
synchronous components, exchanging data. One component is said
to produce data (the producer) and the other is said to consume
data (the consumer). The two are exchanging data in packets,
using a common data bus.

Producer
data

Consumer

© 2024 Opriţoiu Flavius. All Rights Reserved.



Adjusting transfer rate

If the producer can generate one data packet each clock cycle and
the consumer is capable of processing it in the same clock cycle no
handshake signaling is needed.

If the producer cannot generate packets at the rate the consumer
can process them, a signal valid is added to producer, as an
output, asserted when a new packet was put on the common data
lines. The situation is depicted in the figure bellow:

Producer

data

Consumer
valid

Consumer polls, each clock cycle, producer’s valid output and, if
asserted, retrieves the packet for further processing. If valid is not
active consumer waits its assertion.

clk

valid

data pkt1 pkt2 pkt3 pkt4 pkt5

© 2024 Opriţoiu Flavius. All Rights Reserved.



Adjusting transfer rate (contd.)

If the consumer cannot process packets at the rate the producer
generates them, an output signal, ready, is added to consumer,
asserted when new data can be received. The situation is depicted
in the figure bellow:

Producer

data

Consumer
ready

Producer puts the current packet on the data lines. It then polls
the ready line and, if asserted, continues with generating the next
packet, otherwise keeps the current packet on the data lines. The
timing diagram bellow exemplifies the transfer:

clk

ready

data pkt1 pkt2 pkt3 pkt4 pkt5

© 2024 Opriţoiu Flavius. All Rights Reserved.



Handshake signaling

If both producer’s generating new data and consumer’s processing
current packet require additional time, a valid/ready handshake
protocol can be used. The valid and ready signals operates as
described in the previous 2 slides. This interface is depicted bellow:

Producer

data

Consumer
ready

valid

The interface is known also as FIFO interface, or ”Ready/Valid”
interface. Data transfer takes place on the rising edge of the clock
cycle, when both valid and ready signals are asserted.

clk

ready

valid

data pkt1 pkt2 pkt3 pkt4 pkt5

© 2024 Opriţoiu Flavius. All Rights Reserved.



Solved problem
Control unit for the input preprocessing module of a cryptographic application

The input preprocessing unit (IPU, or simply the unit) of a Secure
Hash Algorithm 2 (SHA-2) unit receives 64-bit packets of the
message and assembles and delivers them, in 512-bit blocks, to the
hash engine [FIPS15]. After receiving the complete message, the
unit pads it and append message’s size. The unit’s data flow is
depicted in the figure below. In either perspective, one component
produces data and another one consumes it.

Input

preprocessing

unit

Message

deliverer

Hash

engine

Producer Consumer

Block processing perspective

Producer Consumer

Packet processing perspective

packet

block

© 2024 Opriţoiu Flavius. All Rights Reserved.



Solved problem (contd.)
The packet processing perspective

For brevity, no handshake signaling is used in communication with
the message deliverer. After activation of the reset signal, rst b, in
each clock cycle, a new packet is delivered to the unit. The last
packet of the message is marked by the deliverer by activating its
lst pkt output.

The unit reads and stores a new packet in each clock cycle,
delivering to the hash engine, a new block once every 16 cycles.
After receiving the last packet (asserted lst pkt) the unit adds one
padding packet and, depending on the length of the message, it
appends 0, 1 or more zero packets. In the last block deliver at its
output, the unit append in the least significant 64 bits the length
in bits of the message.

© 2024 Opriţoiu Flavius. All Rights Reserved.



Solved problem (contd.)
The block processing perspective

For communicating with the hash engine, a valid signal is used,
blk val asserted by the unit when a new block is available at its
output. When delivering, the last block, along activation of
blk val, the unit asserts another output, msg end marking
completion of message transmission.

Control unit of the input preprocessing module:

• implements SHA-2’s preprocessing phase

• manages unit’s datapath

• evaluate signals from the message deliverer

• signal specific conditions to the hash engine

© 2024 Opriţoiu Flavius. All Rights Reserved.



Solved problem (contd.)
SHA-2 input preprocessing algorithm

1: procedure DeliverMessage
2: MessageLength← 0 ▷ set message size to 0
3: index← 0 ▷ set current register file index to 0
4: loop
5: RegisterFile[index] = packet ▷ store received packet in register file
6: index ← (index + 1) mod 23 ▷ increment register file index
7: MessageLength← MessageLength+ 64 ▷ increment message’s size
8: if index == 0 then signal new block

9: if lst pkt == 1 then ▷ start message padding
10: RegisterFile[index] = 64’h800000000000000) ▷ 1 followed by 63 of 0s
11: index ← (index + 1) mod 23

12: while index ̸= 7 do ▷ when index is 7, append message size packet
13: if index == 0 then signal new block

14: RegisterFile[index] = 64’h0000000000000000 ▷ all-zero packet
15: index ← (index + 1) mod 23

16: end while
17: RegisterFile[index] = MessageLength ▷ message size packet
18: signal new block
19: signal message end ▷ message was transmitted completely
20: break ▷ leave transmission loop

21: end loop
22: end procedure

© 2024 Opriţoiu Flavius. All Rights Reserved.



Solved problem (contd.)
Control path of the unit

The signals used by the control path to manage the datapath:

• c up: increments the counter storing register file’s index

• clr: clears the register storing the message size and the
counter storing register file’s index

• mgln pkt: appends the message length packet

• pad pkt: appends a padding packet

• st pkt: stores the current packet in the register file

• zero pkt: appends a zero packet

The control path takes the register file’s current index, idx, as
input.

© 2024 Opriţoiu Flavius. All Rights Reserved.



Solved problem (contd.)
Unit’s interface with message deliverer and hash engine

Unit’s interface signals with the message deliverer:

• lst pkt (input): asserted when receiving the final packet

• pkt (64-bit input): current message packet

Unit’s interface signals with the hash engine:

• blk (512-bit output): the current block

• blk val (output): asserted when a new block is available

• msg end (output): asserted when delivering the final block

© 2024 Opriţoiu Flavius. All Rights Reserved.



Solved problem (contd.)
Control unit’s transition diagram

RX_PKT

PAD

lst_pkt/st_pkt

(idx==0)&lst_pkt/blk_val,st_pkt

idx==7/pad_pkt,st_pkt

idx==0/blk_val,pad_pkt,st_pkt
ZERO

idx�7/zero_pkt,st_pkt

lst_pkt/st_pkt

idx�0&lst_pkt/st_pkt

START

MGLN

STOP

(idx�0)&(idx�7)/pad_pkt,st_pkt */mgln_pkt,st_pkt

(idx==0)&lst_pkt/blk_val,st_pkt

idx�0&lst_pkt/st_pkt

idx==7/zero_pkt,st_pkt

MSG_END
*/blk_val,msg_end

*/

© 2024 Opriţoiu Flavius. All Rights Reserved.



Solved problem (contd.)
Control unit’s transition diagram

Preprocessing module’s control unit is defined as a Mealy Finite
State Machine (FSM).

Internal states:

• START: initial state, reached after activation of rst b

• RX PKT: receive a new packet until lst pkt is asserted

• PAD: append a padding packet

• ZERO: append a zero packet

• MGLN: append message length packet

• MSG END: announce the end of message transmission

• STOP: final state; no output is activated

© 2024 Opriţoiu Flavius. All Rights Reserved.



References

[Flet09c] C. Fletcher. EECS150: Interfaces: ”FIFO” (a.k.a.
Ready/Valid). [Online]. Available: https:
//inst.eecs.berkeley.edu/∼cs150/Documents/Interfaces.pdf
(Last accessed 25/10/2017).

[FIPS15] National Institute of Standards and Technology, “FIPS
PUB 180-4: Secure Hash Standard,” Gaithersburg, MD
20899-8900, USA, Tech. Rep., Aug. 2015. [Online]. Available:
http://dx.doi.org/10.6028/NIST.FIPS.180-4 (Last accessed
06/04/2016).

© 2024 Opriţoiu Flavius. All Rights Reserved.

https://inst.eecs.berkeley.edu/~cs150/Documents/Interfaces.pdf
https://inst.eecs.berkeley.edu/~cs150/Documents/Interfaces.pdf
http://dx.doi.org/10.6028/NIST.FIPS.180-4

